1
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let the position vectors of the points $P, Q, R$ and $S$ be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}$, $\vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
A
The points $P, Q, R$ and $S$ are NOT coplanar
B
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ internally in the ratio $5: 4$
C
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ externally in the ratio $5: 4$
D
The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
A
centroid
B
orthocentre
C
incentre
D
circumcentre
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
A
sin(P + Q)
B
sin(P + R)
C
sin(Q + R)
D
sin2R
4
JEE Advanced 2015 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-0
Match the following :

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In $${R^2},$$ If the magnitude of the projection vector of the vector $$\alpha \widehat i + \beta \widehat j$$ on $$\sqrt 3 \widehat i + \widehat j$$ and If $$\alpha = 2 + \sqrt 3 \beta ,$$ then possible value of $$\left| \alpha \right|$$ is/are
(B)$$\,\,\,\,$$ Let $$a$$ and $$b$$ be real numbers such that the function $$f\left( x \right) = \left\{ {\matrix{ { - 3a{x^2} - 2,} & {x < 1} \cr {bx + {a^2},} & {x \ge 1} \cr } } \right.$$ if differentiable for all $$x \in R$$. Then possible value of $$a$$ is (are)
(C)$$\,\,\,\,$$ Let $$\omega \ne 1$$ be a complex cube root of unity. If $${\left( {3 - 3\omega + 2{\omega ^2}} \right)^{4n + 3}} + {\left( {2 + 3\omega - 3{\omega ^2}} \right)^{4n + 3}} + {\left( { - 3 + 2\omega + 3{\omega ^2}} \right)^{4n + 3}} = 0,$$ then possible value (s) of $$n$$ is (are)
(D)$$\,\,\,\,$$ Let the harmonic mean of two positive real numbers $$a$$ and $$b$$ be $$4.$$ If $$q$$ is a positive real nimber such that $$a, 5, q, b$$ is an arithmetic progression, then the value(s) of $$\left| {q - a} \right|$$ is (are)

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$II$$
(p)$$\,\,\,\,$$ $$1$$
(q)$$\,\,\,\,$$ $$2$$
(r)$$\,\,\,\,$$ $$3$$
(s)$$\,\,\,\,$$ $$4$$
(t)$$\,\,\,\,$$ $$5$$

A
$$\left( A \right) \to p, q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q,t$$
B
$$\left( A \right) \to q;\,\,\left( B \right) \to q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q,t$$
C
$$\left( A \right) \to q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,t;\,\,\left( D \right) \to q,t$$
D
$$\left( A \right) \to q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q$$
JEE Advanced Subjects