1
JEE Advanced 2025 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1

Let $x_0$ be the real number such that $e^{x_0} + x_0 = 0$. For a given real number $\alpha$, define

$$g(x) = \frac{3x e^x + 3x - \alpha e^x - \alpha x}{3(e^x + 1)}$$

for all real numbers $x$.

Then which one of the following statements is TRUE?

A

For $\alpha = 2$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$

B

For $\alpha = 2$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 1$

C

For $\alpha = 3$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$

D

For $\alpha = 3$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = \frac{2}{3}$

2
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1

Let $\mathbb{R}$ denote the set of all real numbers. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$f(x)=\left\{\begin{array}{cc}2-2 x^2-x^2 \sin \frac{1}{x} & \text { if } x \neq 0, \\ 2 & \text { if } x=0 .\end{array}\right.$

Then which one of the following statements is TRUE?

A

The function $f$ is NOT differentiable at $x = 0$

B

There is a positive real number $\delta$, such that $f$ is a decreasing function on the interval $(0, \delta)$

C

For any positive real number $\delta$, the function $f$ is NOT an increasing function on the interval $(-\delta, 0)$

D

$x = 0$ is a point of local minima of $f$

3
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1

Let $\mathbb{R}$ denote the set of all real numbers. For a real number $x$, let [ x ] denote the greatest integer less than or equal to $x$. Let $n$ denote a natural number.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List–I List–II
(P) The minimum value of $n$ for which the function $$ f(x)=\left[\frac{10 x^3-45 x^2+60 x+35}{n}\right] $$ is continuous on the interval $[1,2]$, is (1) 8
(Q) The minimum value of $n$ for which $g(x)=\left(2 n^2-13 n-15\right)\left(x^3+3 x\right)$, $x \in \mathbb{R}$, is an increasing function on $\mathbb{R}$, is (2) 9
(R) The smallest natural number $n$ which is greater than 5 , such that $x=3$ is a point of local minima of $$ h(x)=\left(x^2-9\right)^n\left(x^2+2 x+3\right) $$ is (3) 5
(S) Number of $x_0 \in \mathbb{R}$ such that

$$ l(x)=\sum\limits_{k=0}^4\left(\sin |x-k|+\cos \left|x-k+\frac{1}{2}\right|\right) $$

$x \in \mathbb{R}$, is NOT differentiable at $x_0$, is
(4) 6
(5) 10
A

(P) → (1)   (Q) → (3)   (R) → (2)   (S) → (5)

B

(P) → (2)   (Q) → (1)   (R) → (4)   (S) → (3)

C

(P) → (5)   (Q) → (1)   (R) → (4)   (S) → (3)

D

(P) → (2)   (Q) → (3)   (R) → (1)   (S) → (5)

4
JEE Advanced 2024 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $k \in \mathbb{R}$. If $\lim \limits_{x \rightarrow 0+}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=e^6$, then the value of $k$ is
A
1
B
2
C
3
D
4
JEE Advanced Subjects