1
JEE Advanced 2025 Paper 2 Online
Numerical
+4
-0

Let $a_0, a_1, \ldots, a_{23}$ be real numbers such that

$$ \left(1+\frac{2}{5} x\right)^{23}=\sum\limits_{i=0}^{23} a_i x^i $$

for every real number $x$. Let $a_r$ be the largest among the numbers $a_j$ for $0 \leq j \leq 23$. Then the value of $r$ is ____________.

Your input ____
2
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Let $a$ and $b$ be two nonzero real numbers. If the coefficient of $x^5$ in the expansion of $\left(a x^2+\frac{70}{27 b x}\right)^4$ is equal to the coefficient of $x^{-5}$ in the expansion of $\left(a x-\frac{1}{b x^2}\right)^7$, then the value of $2 b$ is :
Your input ____
3
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Let $$X = {({}^{10}{C_1})^2} + 2{({}^{10}{C_2})^2} + 3{({}^{10}{C_3})^2} + ... + 10{({}^{10}{C_{10}})^2}$$,

where $${}^{10}{C_r}$$, r $$ \in $${1, 2, ..., 10} denote binomial coefficients. Then, the value of $${1 \over {1430}}X$$ is ..........
Your input ____
4
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
Let $$m$$ be the smallest positive integer such that the coefficient of $${x^2}$$ in the expansion of $${\left( {1 + x} \right)^2} + {\left( {1 + x} \right)^3} + ........ + {\left( {1 + x} \right)^{49}} + {\left( {1 + mx} \right)^{50}}\,\,$$ is $$\left( {3n + 1} \right)\,{}^{51}{C_3}$$ for some positive integer $$n$$. Then the value of $$n$$ is
Your input ____
JEE Advanced Subjects