Complex Numbers
Practice Questions
Numerical
1

For a non-zero complex number $z$, let $\arg (z)$ denote the principal argument of $z$, with $-\pi<\arg (z) \leq \pi$. Let $\omega$ be the cube root of unity for which $0<\arg (\omega)<\pi$. Let

$$ \alpha=\arg \left(\sum\limits_{n=1}^{2025}(-\omega)^n\right) $$

Then the value of $\frac{3 \alpha}{\pi}$ is ________________.

JEE Advanced 2025 Paper 2 Online
2

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to ____________.

JEE Advanced 2024 Paper 1 Online
3
Let $A=\left\{\frac{1967+1686 i \sin \theta}{7-3 i \cos \theta}: \theta \in \mathbb{R}\right\}$. If $A$ contains exactly one positive integer $n$, then the value of $n$ is
JEE Advanced 2023 Paper 1 Online
4
Let $$z$$ be a complex number with a non-zero imaginary part. If

$$ \frac{2+3 z+4 z^{2}}{2-3 z+4 z^{2}} $$

is a real number, then the value of $$|z|^{2}$$ is _________.
JEE Advanced 2022 Paper 1 Online
5
Let $$\bar{z}$$ denote the complex conjugate of a complex number $$z$$ and let $$i=\sqrt{-1}$$. In the set of complex numbers, the number of distinct roots of the equation

$$ \bar{z}-z^{2}=i\left(\bar{z}+z^{2}\right) $$

is _________.
JEE Advanced 2022 Paper 1 Online
6
For a complex number z, let Re(z) denote that real part of z. Let S be the set of all complex numbers z satisfying $${z^4} - |z{|^4} = 4i{z^2}$$, where i = $$\sqrt { - 1} $$. Then the minimum possible value of |z1 $$-$$ z2|2, where z1, z2$$ \in $$S with Re(z1) > 0 and Re(z2) < 0 is .........
JEE Advanced 2020 Paper 2 Offline
7
Let $$\omega \ne 1$$ be a cube root of unity. Then the minimum of the set $$\{ {\left| {a + b\omega + c{\omega ^2}} \right|^2}:a,b,c$$ distinct non-zero integers} equals ..................
JEE Advanced 2019 Paper 1 Offline
8
For any integer k, let $${a_k} = \cos \left( {{{k\pi } \over 7}} \right) + i\,\,\sin \left( {{{k\pi } \over 7}} \right)$$, where $$i = \sqrt { - 1} \,$$. The value of the expression $${{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {a_k}} \right|} } \over {\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}$$ is
JEE Advanced 2015 Paper 2 Offline
9
If z is any complex number satisfying $$\,\left| {z - 3 - 2i} \right| \le 2$$, then the minimum value of $$\left| {2z - 6 + 5i} \right|$$ is
IIT-JEE 2011 Paper 1 Offline
10
Let $$\omega = {e^{{{i\pi } \over 3}}}$$, and a, b, c, x, y, z be non-zero complex numbers such that
$$a + b + c = x$$
$$a + b\omega + c{\omega ^2} = y$$
$$a + b{\omega ^2} + c\omega = z$$

Then the value of $${{{{\left| x \right|}^2} + {{\left| y \right|}^2} + {{\left| z \right|}^2}} \over {{{\left| a \right|}^2} + {{\left| b \right|}^2} + {{\left| c \right|}^2}}}$$ is

IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
1

Let denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let

$$S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + iy - z_1| = 2|x + iy - z_2| \}.$$

Then which of the following statements is (are) TRUE?

JEE Advanced 2025 Paper 1 Online
2
Let $S=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}, T_1=\left\{(-1+\sqrt{2})^n: n \in \mathbb{N}\right\}$, and $T_2=\left\{(1+\sqrt{2})^n: n \in \mathbb{N}\right\}$. Then which of the following statements is (are) TRUE?
JEE Advanced 2024 Paper 1 Online
3
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of $$ (\bar{z})^{2}+\frac{1}{z^{2}} $$ are integers, then which of the following is/are possible value(s) of $|z|$ ?
JEE Advanced 2022 Paper 2 Online
4
For any complex number w = c + id, let $$\arg (w) \in ( - \pi ,\pi ]$$, where $$i = \sqrt { - 1} $$. Let $$\alpha$$ and $$\beta$$ be real numbers such that for all complex numbers z = x + iy satisfying $$\arg \left( {{{z + \alpha } \over {z + \beta }}} \right) = {\pi \over 4}$$, the ordered pair (x, y) lies on the circle $${x^2} + {y^2} + 5x - 3y + 4 = 0$$, Then which of the following statements is (are) TRUE?
JEE Advanced 2021 Paper 1 Online
5
Let S be the set of all complex numbers z
satisfying |z2 + z + 1| = 1. Then which of the following statements is/are TRUE?
JEE Advanced 2020 Paper 1 Offline
6
Let s, t, r be non-zero complex numbers and L be the set of solutions $$z = x + iy(x,y \in R,\,i = \sqrt { - 1} )$$ of the equation $$sz + t\overline z + r = 0$$ where $$\overline z $$ = x $$-$$ iy. Then, which of the following statement(s) is(are) TRUE?
JEE Advanced 2018 Paper 2 Offline
7
For a non-zero complex number z, let arg(z) denote the principal argument with $$-$$ $$\pi $$ < arg(z) $$ \le $$ $$\pi $$. Then, which of the following statement(s) is (are) FALSE?
JEE Advanced 2018 Paper 1 Offline
8
Let a, b, x and y be real numbers such that a $$-$$ b = 1 and y $$ \ne $$ 0. If the complex number z = x + iy satisfies $${\mathop{\rm Im}\nolimits} \left( {{{az + b} \over {z + 1}}} \right) = y$$, then which of the following is(are) possible value(s) of x?
JEE Advanced 2017 Paper 1 Offline
9
Let $$a,\,b \in R\,and\,{a^{2\,}} + {b^2} \ne 0$$. Suppose
$$S = \left\{ {Z \in C:Z = {1 \over {a + ibt}}, + \in R,t \ne 0} \right\}$$, where $$i = \sqrt { - 1} $$. Ifz = x + iy and z $$ \in $$ S, then (x, y) lies on
JEE Advanced 2016 Paper 2 Offline
10

Let $\omega=\frac{\sqrt{3}+i}{2}$ and $P=\left\{\omega^n: n=1,2,3, \ldots\right\}$. Further

$\mathrm{H}_1=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{1}{2}\right\}$ and

$\mathrm{H}_2=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the

set of all complex numbers. If $z_1 \in \mathrm{P} \cap \mathrm{H}_1, z_2 \in$ $\mathrm{P} \cap \mathrm{H}_2$ and O

represents the origin, then $\angle z_1 \mathrm{O} z_2=$

JEE Advanced 2013 Paper 2 Offline
11
Let $${{z_1}}$$ and $${{z_2}}$$ be two distinct complex number and let z =( 1 - t)$${{z_1}}$$ + t$${{z_2}}$$ for some real number t with 0 < t < 1. IfArg (w) denote the principal argument of a non-zero complex number w, then
IIT-JEE 2010 Paper 1 Offline
12

Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.

If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :

IIT-JEE 2010 Paper 1 Offline
13
If $${\omega}$$ is an imaginary cube root of unity, then $${(1\, + \omega \, - {\omega ^2})^7}$$ equals
IIT-JEE 1998
14
If $$\,\left| {\matrix{ {6i} & { - 3i} & 1 \cr 4 & {3i} & { - 1} \cr {20} & 3 & i \cr } } \right| = x + iy$$ , then
IIT-JEE 1998
15
The value of the sum $$\,\,\sum\limits_{n = 1}^{13} {({i^n}} + {i^{n + 1}})$$ , where i = $$\sqrt { - 1} $$, equals
IIT-JEE 1998
16
The value of $$\sum\limits_{k = 1}^6 {(\sin {{2\pi k} \over 7}} - i\,\cos \,{{2\pi k} \over 7})$$ is
IIT-JEE 1987
17
If $${{{z_1}}}$$ and $${{{z_2}}}$$ are two nonzero complex numbers such that $$\left| {{z_1}\, + {z_2}} \right| = \left| {{z_1}} \right|\, + \left| {{z_2}} \right|\,$$, then Arg $${z_1}$$ - Arg $${z_2}$$ is equal to
IIT-JEE 1987
18
Let $${z_1}$$ and $${z_2}$$ be complex numbers such that $${z_1}$$ $$ \ne $$ $${z_2}$$ and $$\left| {{z_1}} \right| =\,\left| {{z_2}} \right|$$. If $${z_1}$$ has positive real and $${z_2}$$ has negative imaginary part, then $${{{z_1}\, + \,{z_2}} \over {{z_1}\, - \,{z_2}}}$$ may be
IIT-JEE 1986
19
If $${z_1}$$ = a + ib and $${z_2}$$ = c + id are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = 1$$ and $${\mathop{\rm Re}\nolimits} ({z_1}\,{\overline z _2}) = 0$$, then the pair of complex numbers $${w_1}$$ = a + ic and $${w_2}$$ = b+ id satisfies -
IIT-JEE 1985
MCQ (Single Correct Answer)
1
Let $z$ be a complex number satisfying $|z|^3+2 z^2+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) $|z|^2$ is equal to (1) 12
(Q) $|z-\bar{z}|^2$ is equal to (2) 4
(R) $|z|^2+|z+\bar{z}|^2$ is equal to (3) 8
(S) $|z+1|^2$ is equal to (4) 10
(5) 7

The correct option is:
JEE Advanced 2023 Paper 1 Online
2
Let $\theta_1, \theta_2, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_1+\theta_2+\cdots+\theta_{10}=2 \pi$. Define the complex numbers $z_1=e^{i \theta_1}, z_k=z_{k-1} e^{i \theta_k}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements $P$ and $Q$ given below:

$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$

$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$

Then,
JEE Advanced 2021 Paper 1 Online
3
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
JEE Advanced 2019 Paper 1 Offline
4
Let $${z_k}$$ = $$\cos \left( {{{2k\pi } \over {10}}} \right) + i\,\,\sin \left( {{{2k\pi } \over {10}}} \right);\,k = 1,2....,9$$

List-I


P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals

List-II


1. True
2. False
3. 1
4. 2
JEE Advanced 2014 Paper 2 Offline
5
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

Area of S =

JEE Advanced 2013 Paper 2 Offline
6
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$

JEE Advanced 2013 Paper 2 Offline
7
Let complex numbers $$\alpha \,and\,{1 \over {\overline \alpha }}\,$$ lie on circles $${\left( {x - {x_0}} \right)^2} + \,\,{\left( {y - {y_0}} \right)^2} = {r^2}$$ and $$\,{\left( {x - {x_0}} \right)^2} + \,\,{\left( {y - {y_0}} \right)^2} = 4{r^2}$$ respextively. If $${z_0} = {x_0} + i{y_0}$$ satisfies the equation $$2{\left| {{z_0}} \right|^2}\, = {r^2} + 2,\,then\,\left| a \right| = $$
JEE Advanced 2013 Paper 1 Offline
8
Let z be a complex number such that the imaginary part of z is non-zero and $$a\, = \,{z^2} + \,z\, + 1$$ is real. Then a cannot take the value
IIT-JEE 2012 Paper 1 Offline
9
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
IIT-JEE 2010 Paper 2 Offline
10

Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is

IIT-JEE 2009 Paper 1 Offline
11
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta $$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
IIT-JEE 2009 Paper 1 Offline
12
A particle P stats from the point $${z_0}$$ = 1 +2i, where $$i = \sqrt { - 1} $$. It moves horizontally away from origin by 5 unit and then vertically away from origin by 3 units to reach a point $${z_1}$$. From $${z_1}$$ the particle moves $$\sqrt 2 $$ units in the direction of the vector $$\hat i + \hat j$$ and then it moves through an angle $${\pi \over 2}$$ in anticlockwise direction on a circle with centre at origin, to reach a point $${z_2}$$. The point $${z_2}$$ is given by
IIT-JEE 2008 Paper 2 Offline
13

The number of elements in the set $$A \cap B \cap C$$ is

IIT-JEE 2008 Paper 1 Offline
14

Let z be any point in $$A \cap B \cap C$$

Then, $${\left| {z + 1 - i} \right|^2} + {\left| {z - 5 - i} \right|^2}$$ lies between :

IIT-JEE 2008 Paper 1 Offline
15

Let z be any point $$A \cap B \cap C$$ and let w be any point satisfying $$\left| {w - 2 - i} \right| < 3\,$$. Then, $$\left| z \right| - \left| w \right| + 3$$ lies between :

IIT-JEE 2008 Paper 1 Offline
16
A man walks a distance of 3 units from the origin towards the north-east ($$N\,{45^ \circ E }$$) direction. From there, he walks a distance of 4 units towards the north-west $$\left( {N\,{{45}^ \circ }\,W} \right)$$ direction to reach a point P. Then the position of P in the Argand plane is
IIT-JEE 2007
17
If $$\left| z \right|\, =1\,and\,z\, \ne \, \pm \,1,$$ then all the values of $${z \over {1 - {z^2}}}$$ lie on
IIT-JEE 2007
18
If $${{w - \overline w z} \over {1 - z}}$$ is purely real where $$w = \alpha + i\beta ,$$ $$\beta \ne 0$$ and $$z \ne 1,$$ then the set of the values of z is
IIT-JEE 2006
19
$$a,\,b,\,c$$ are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$ then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|$$ is
IIT-JEE 2005 Screening
20
If $$\omega $$ $$\left( { \ne 1} \right)$$ be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$ then the least positive value of n is
IIT-JEE 2004 Screening
21
If $$\,\left| z \right| = 1$$ and $$\omega = {{z - 1} \over {z + 1}}$$ (where $$z \ne - 1$$), then $${\mathop{\rm Re}\nolimits} \left( \omega \right)$$ is
IIT-JEE 2003 Screening
22
Let $$\omega $$ $$ = - {1 \over 2} + i{{\sqrt 3 } \over 2},$$ then the value of the det.
$$\,\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - 1 - {\omega ^2}} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^4}} \cr } } \right|$$ is
IIT-JEE 2002
23
For all complex numbers $${z_1},\,{z_2}$$ satisfying $$\left| {{z_1}} \right| = 12$$ and $$\left| {{z_2} - 3 - 4i} \right| = 5,$$
the minimum value of $$\left| {{z_1} - {z_2}} \right|$$ is
IIT-JEE 2002 Screening
24
Let $${z_1}$$ and $${z_2}$$ be $${n^{th}}$$ roots of unity which subtend a right angle at the origin. Then $$n$$ must be of the form
IIT-JEE 2001 Screening
25
The complex numbers $${z_1},\,{z_2}$$ and $${z_3}$$ satisfying $${{{z_1} - {z_3}} \over {{z_2} - {z_3}}} = {{1 - i\sqrt 3 } \over 2}\,$$ are the vertices of a triangle which is
IIT-JEE 2001 Screening
26
If $$\arg \left( z \right) < 0,$$ then $$\arg \left( { - z} \right) - \arg \left( z \right) = $$
IIT-JEE 2000 Screening
27
If $${z_1},\,{z_2}$$ and $${z_3}$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {{1 \over {{z_1}}} + {1 \over {{z_2}}} + {1 \over {{z_3}}}} \right| = 1,$$ then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ is
IIT-JEE 2000 Screening
28
$$If\,i = \sqrt { - 1} ,\,\,then\,\,4 + 5{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{334}} + 3{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{365}}$$ is equal to
IIT-JEE 1999
29
For positive integers $${n_1},\,{n_2}$$ the value of the expression $${\left( {1 + i} \right)^{^{{n_1}}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}},$$
where $$i = \sqrt { - 1} $$ is real number if and only if
IIT-JEE 1996
30
Let $$z$$ and $$\omega $$ be two non zero complex numbers such that
$$\left| z \right| = \left| \omega \right|$$ and $${\rm A}rg\,z + {\rm A}rg\,\omega = \pi ,$$ then $$z$$ equals
IIT-JEE 1995 Screening
31
Let $$z$$ and $$\omega $$ be two complex numbers such that
$$\left| z \right| \le 1,$$ $$\left| \omega \right| \le 1$$ and $$\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
IIT-JEE 1995 Screening
32
If $$\omega \,\left( { \ne 1} \right)$$ is a cube root of unity and $${\left( {1 + \omega } \right)^7} = A + B\,\omega $$ then $$A$$ and $$B$$ are respectively
IIT-JEE 1995 Screening
33
$${\rm{z }} \ne {\rm{0}}$$ is a complex number

Column I


(A) Re z = 0
(B) Arg $$z = {\pi \over 4}$$

Column II


(p) Re$${z^2}$$ = 0
(q) Im$${z^2}$$ = 0
(r) Re$${z^2}$$ = Im$${z^2}$$
IIT-JEE 1992
34
If $$a,\,b,\,c$$ and $$u,\,v,\,w$$ are complex numbers representing the vertics of two triangles such that $$c = \left( {1 - r} \right)a + rb$$ and $$w = \left( {1 - r} \right)u + rv,$$ where $$w = \left( {1 - r} \right)u + rv,$$ is a complex number, then the two triangles
IIT-JEE 1985
35
If $$z = x + iy$$ and $$\omega = \left( {1 - iz} \right)/\left( {z - i} \right),$$ then $$\,\left| \omega \right| = 1$$ implies that, in the complex plane,
IIT-JEE 1983
36
The points z1, z2, z3, z4 in the complex plane are the vertices of a parallelogram taken in order if and only if
IIT-JEE 1983
37
If $$z = {\left( {{{\sqrt 3 } \over 2} + {i \over 2}} \right)^5} + {\left( {{{\sqrt 3 } \over 2} - {i \over 2}} \right)^5},$$ then
IIT-JEE 1982
38
The inequality |z-4| < |z-2| represents the region given by
IIT-JEE 1982
39
The complex numbers $$z = x + iy$$ which satisfy the equation $$\,\left| {{{z - 5i} \over {z + 5i}}} \right| = 1$$ lie on
IIT-JEE 1981
40
The smallest positive integer n for which $${\left( {{{1 + i} \over {1 - i}}} \right)^n} = 1$$ is
IIT-JEE 1980
41
If the cube roots of unity are $$1,\,\omega ,\,{\omega ^2},$$ then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0$$ are
IIT-JEE 1979
Subjective
1
If one the vertices of the square circumscribing the circle $$\left| {z - 1} \right| = \sqrt 2 \,is\,2 + \sqrt {3\,} \,i$$. Find the other vertices of the square.
IIT-JEE 2005
2
Find the centre and radius of circle given by $$\,\left| {{{z - \alpha } \over {z - \beta }}} \right| = k,k \ne 1\,$$

where, $${\rm{z = x + iy, }}\alpha {\rm{ = }}\,{\alpha _1}{\rm{ + i}}{\alpha _2}{\rm{,}}\,\beta = {\beta _1}{\rm{ + i}}{\beta _2}{\rm{ }}$$

IIT-JEE 2004
3
Prove that there exists no complex number z such that $$\left| z \right| < {1 \over 3}\,and\,\sum\limits_{r = 1}^n {{a_r}{z^r}} = 1$$ where $$\left| {{a_r}} \right| < 2$$.
IIT-JEE 2003
4
If $${z_1}$$ and $${z_2}$$ are two complex numbers such that $$\,\left| {{z_1}} \right| < 1 < \left| {{z_2}} \right|\,$$ then prove that $$\,\left| {{{1 - {z_1}\overline {{z_2}} } \over {{z_1} - {z_2}}}} \right| < 1$$.
IIT-JEE 2003
5
Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.
IIT-JEE 2002
6
For complex numbers z and w, prove that $${\left| z \right|^2}w - {\left| w \right|^2}z = z - w$$ if and only if $$ z = w\,or\,z\overline {\,w} = 1$$.
IIT-JEE 1999
7
Let $${z_1}$$ and $${z_2}$$ be roots of the equation $${z^2} + pz + q = 0\,$$ , where the coefficients p and q may be complex numbers. Let A and B represent $${z_1}$$ and $${z_2}$$ in the complex plane. If $$\angle AOB = \alpha \ne 0\,$$ and OA = OB, where O is the origin, prove that $${p^2} = 4q\,{\cos ^2}\left( {{\alpha \over 2}} \right)$$.
IIT-JEE 1997
8
Find all non-zero complex numbers Z satisfying $$\overline Z = i{Z^2}$$.
IIT-JEE 1996
9
If $$\left| {Z - W} \right| \le 1,\left| W \right| \le 1$$, show that $${\left| {Z - W} \right|^2} \le {(\left| Z \right| - \left| W \right|)^2} + {(ArgZ - Arg\,W)^2}$$
IIT-JEE 1995
10
If $$i{z^3} + {z^2} - z + i = 0$$ , then show that $$\left| z \right| = 1$$.
IIT-JEE 1995
11
Let $${z_1}$$ = 10 + 6i and $${z_2}$$ = 4 + 6i. If Z is any complex number such that the argument of $${{(z - {z_1})} \over {(z - {z_2})}}\,is{\pi \over 4}$$ , then prove that $$\left| {z - 7 - 9i} \right| = 3\sqrt 2 $$.
IIT-JEE 1990
12
Show that the area of the triangle on the Argand diagram formed by the complex numbers z, iz and z + iz is $${1 \over 2}\,{\left| z \right|^2}$$ .
IIT-JEE 1986
13
If 1, $${{a_1}}$$, $${{a_2}}$$......,$${a_{n - 1}}$$ are the n roots of unity, then show that (1- $${{a_1}}$$) (1- $${{a_2}}$$) (1- $${{a_3}}$$) ....$$(1 - \,a{ - _{n - 1}}) = n$$
IIT-JEE 1984
14
Prove that the complex numbers $${{z_1}}$$, $${{z_2}}$$ and the origin form an equilateral triangle only if $$z_1^2 + z_2^2 - {z_1}\,{z_2} = 0$$.
IIT-JEE 1983
15
Let the complex number $${{z_1}}$$, $${{z_2}}$$ and $${{z_3}}$$ be the vertices of an equilateral triangle. Let $${{z_0}}$$ be the circumcentre of the triangle. Then prove that $$z_1^2 + z_2^2 + z_3^2 = 3z_0^2$$.
IIT-JEE 1981
16
Find the real values of x and y for which the following equation is satisfied $$\,{{(1 + i)x - 2i} \over {3 + i}} + {{(2 + 3i)y + i} \over {3 - i}} = i$$
IIT-JEE 1980
17
If x + iy = $$\sqrt {{{a + ib} \over {c + id}}} $$, prove that $${({x^2} + {y^2})^2} = {{{a^2} + {b^2}} \over {{c^2} + {d^2}}}$$.
IIT-JEE 1979
18
If x = a + b, y = a$$\gamma $$ + b$$\beta $$ and z = a$$\beta $$ +b$$\gamma $$ where $$\gamma $$ and $$\beta $$ are the complex cube roots of unity, show that xyz = $${a^3} + {b^3}$$.
IIT-JEE 1978
19
Express $${1 \over {1 - \cos \,\theta + 2i\sin \theta }}$$ in the form x + iy.
IIT-JEE 1978