Mathematical Induction and Binomial Theorem
Practice Questions
MCQ (Single Correct Answer)
1
Coefficient of $${x^{11}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$ is
JEE Advanced 2014 Paper 2 Offline
2
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
IIT-JEE 2010 Paper 2 Offline
3
The value of $$$\left( {\matrix{ {30} \cr 0 \cr } } \right)\left( {\matrix{ {30} \cr {10} \cr } } \right) - \left( {\matrix{ {30} \cr 1 \cr } } \right)\left( {\matrix{ {30} \cr {11} \cr } } \right) + \left( {\matrix{ {30} \cr 2 \cr } } \right)\left( {\matrix{ {30} \cr {12} \cr } } \right)....... + \left( {\matrix{ {30} \cr {20} \cr } } \right)\left( {\matrix{ {30} \cr {30} \cr } } \right)$$$
is where $$\left( {\matrix{ n \cr r \cr } } \right) = {}^n{C_r}$$
IIT-JEE 2005 Screening
4
If $${}^{n - 1}{C_r} = \left( {{k^2} - 3} \right)\,{}^n{C_{r + 1,}}$$ then $$k \in $$
IIT-JEE 2004 Screening
5
Coefficient of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right)$$ is
IIT-JEE 2003 Screening
6
The sum $$\sum\limits_{i = 0}^m {\left( {\matrix{ {10} \cr i \cr } } \right)\left( {\matrix{ {20} \cr {m - i} \cr } } \right),\,\left( {where\left( {\matrix{ p \cr q \cr } } \right) = 0\,\,if\,\,p < q} \right)} $$ is maximum when $$m$$ is
IIT-JEE 2002 Screening
7
In the binomial expansion of $${\left( {a - b} \right)^n},\,n \ge 5,$$ the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$a/b$$ equals
IIT-JEE 2001 Screening
8
For $$2 \le r \le n,\,\,\,\,\left( {\matrix{ n \cr r \cr } } \right) + 2\left( {\matrix{ n \cr {r - 1} \cr } } \right) + \left( {\matrix{ n \cr {r - 2} \cr } } \right) = $$
IIT-JEE 2000 Screening
9
If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$ the coefficients of $$x$$ and $${x^2}$$ are $$3$$ and $$-6$$ respectively, then $$m$$ is
IIT-JEE 1999
10
If $${a_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}},\,\,\,then\,\,\,\sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}} } $$ equals
IIT-JEE 1998
11
The expansion $${\left( {x + {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5}$$ is a polynomial of degree
IIT-JEE 1992
12
If $${C_r}$$ stands for $${}^n{C_r},$$ then the sum of the series $${{2\left( {{n \over 2}} \right){\mkern 1mu} !{\mkern 1mu} \left( {{n \over 2}} \right){\mkern 1mu} !} \over {n!}}\left[ {C_0^2 - 2C_1^2 + 3C_2^2 - } \right......... + {\left( { - 1} \right)^n}\left( {n + 1} \right)C_n^2\mathop ]\limits^ \sim \,,$$
where $$n$$ is an even positive integer, is equal to
IIT-JEE 1986
13
Given positive integers $$r > 1,\,n > 2$$ and that the coefficient of $$\left( {3r} \right)$$th and $$\left( {r + 2} \right)$$th terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal. Then
IIT-JEE 1983
14
The coefficient of $${x^4}$$ in $${\left( {{x \over 2} - {3 \over {{x^2}}}} \right)^{10}}$$ is
IIT-JEE 1983
Subjective
1
Prove that
$${2^k}\left( {\matrix{ n \cr 0 \cr } } \right)\left( {\matrix{ n \cr k \cr } } \right) - {2^{^{k - 1}\left( {\matrix{ n \cr 2 \cr } } \right)}}\left( {\matrix{ n \cr 1 \cr } } \right)\left( {\matrix{ {n - 1} \cr {k - 1} \cr } } \right)$$
$$ + {2^{k - 2}}\left( {\matrix{ {n - 2} \cr {k - 2} \cr } } \right) - .....{\left( { - 1} \right)^k}\left( {\matrix{ n \cr k \cr } } \right)\left( {\matrix{ {n - k} \cr 0 \cr } } \right) = {\left( {\matrix{ n \cr k \cr } } \right)^ \cdot }$$
IIT-JEE 2003
2
Use mathematical induction to show that
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$ = n = 1,2,...$$
IIT-JEE 2002
3
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{ n \cr m \cr } } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$

Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.

IIT-JEE 2000
4
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
IIT-JEE 2000
5
A coin probability $$p$$ of showing head when tossed. It is tossed $$n$$ times. Let $${p_n}$$ denote the probability that no two (or more) consecutive heads occur. Prove that $${p_1} = 1,\,\,{p_2} = 1 - {p^2}$$ and $${p_n} = \left( {1 - p} \right).\,\,{p_{n - 1}} + p\left( {1 - p} \right){p_{n - 2}}$$ for all $$n \ge 3.$$

Prove by induction on, that $${p_n} = A{\alpha ^n} + B{\beta ^n}$$ for all $$n \ge 1,$$ where $$\alpha $$ and $$\beta $$ are the roots of quadratic equation $${x^2} - \left( {1 - p} \right)x - p\left( {1 - p} \right) = 0$$ and $$A = {{{p^2} + \beta - 1} \over {\alpha \beta - {\alpha ^2}}},B = {{{p^2} + \alpha - 1} \over {\alpha \beta - {\beta ^2}}}.$$

IIT-JEE 2000
6
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
IIT-JEE 2000
7
Let $$n$$ be any positive integer. Prove that $$$\sum\limits_{k = 0}^m {{{\left( {\matrix{ {2n - k} \cr k \cr } } \right)} \over {\left( {\matrix{ {2n - k} \cr n \cr } } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{ n \cr m \cr } } \right)} \over {\left( {\matrix{ {2n - 2m} \cr {n - m} \cr } } \right)}}{2^{n - 2m}}} $$$

for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$

IIT-JEE 1999
8
Let $$p$$ be a prime and $$m$$ a positive integer. By mathematical induction on $$m$$, or otherwise, prove that whenever $$r$$ is an integer such that $$p$$ does not divide $$r$$, $$p$$ divides $${}^{np}{C_r},$$

[Hint: You may use the fact that $${\left( {1 + x} \right)^{\left( {m + 1} \right)p}} = {\left( {1 + x} \right)^p}{\left( {1 + x} \right)^{mp}}$$]

IIT-JEE 1998
9
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

IIT-JEE 1997
10
Using mathematical induction prove that for every integer $$n \ge 1,\,\,\left( {{3^{2n}} - 1} \right)$$ is divisible by $${2^{n + 2}}$$ but not by $${2^{n + 3}}$$.
IIT-JEE 1996
11
If $$x$$ is not an integral multiple of $$2\pi $$ use mathematical induction to prove that : $$$\cos x + \cos 2x + .......... + \cos nx = \cos {{n + 1} \over 2}x\sin {{nx} \over 2}\cos ec{x \over 2}$$$
IIT-JEE 1994
12
Let $$n$$ be a positive integer and $${\left( {1 + x + {x^2}} \right)^n} = {a_0} + {a_1}x + ............ + {a_{2n}}{x^{2n}}$$
Show that $$a_0^2 - a_1^2 + a_2^2...... + {a_{2n}}{}^2 = {a_n}$$
IIT-JEE 1994
13
Prove that $$\sum\limits_{r = 1}^k {{{\left( { - 3} \right)}^{r - 1}}\,\,{}^{3n}{C_{2r - 1}} = 0,} $$ where $$k = \left( {3n} \right)/2$$ and $$n$$ is an even positive integer.
IIT-JEE 1993
14
Using mathematical induction, prove that
$${\tan ^{ - 1}}\left( {1/3} \right) + {\tan ^{ - 1}}\left( {1/7} \right) + ........{\tan ^{ - 1}}\left\{ {1/\left( {{n^2} + n + 1} \right)} \right\} = {\tan ^{ - 1}}\left\{ {n/\left( {n + 2} \right)} \right\}$$
IIT-JEE 1993
15
Let $$p \ge 3$$ be an integer and $$\alpha $$, $$\beta $$ be the roots of $${x^2} - \left( {p + 1} \right)x + 1 = 0$$ using mathematical induction show that $${\alpha ^n} + {\beta ^n}.$$
(i) is an integer and (ii) is not divisible by $$p$$
IIT-JEE 1992
16
If $$\sum\limits_{r = 0}^{2n} {{a_r}{{\left( {x - 2} \right)}^r}\,\, = \sum\limits_{r = 0}^{2n} {{b_r}{{\left( {x - 3} \right)}^r}} } $$ and $${a_k} = 1$$ for all $$k \ge n,$$ then show that $${b_n} = {}^{2n + 1}{C_{n + 1}}$$
IIT-JEE 1992
17
Using induction or otherwise, prove that for any non-negative integers $$m$$, $$n$$, $$r$$ and $$k$$ ,
$$\sum\limits_{m = 0}^k {\left( {n - m} \right)} {{\left( {r + m} \right)!} \over {m!}} = {{\left( {r + k + 1} \right)!} \over {k!}}\left[ {{n \over {r + 1}} - {k \over {r + 2}}} \right]$$
IIT-JEE 1991
18
Prove that $${{{n^7}} \over 7} + {{{n^5}} \over 5} + {{2{n^3}} \over 3} - {n \over {105}}$$ is an integer for every positive integer $$n$$
IIT-JEE 1990
19
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$
IIT-JEE 1989
20
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$
IIT-JEE 1989
21
Let $$R$$ $$ = {\left( {5\sqrt 5 + 11} \right)^{2n + 1}}$$ and $$f = R - \left[ R \right],$$ where [ ] denotes the greatest integer function. Prove that $$Rf = {4^{2n + 4}}$$
IIT-JEE 1988
22
Prove by mathematical induction that $$ - 5 - {{\left( {2n} \right)!} \over {{2^{2n}}{{\left( {n!} \right)}^2}}} \le {1 \over {{{\left( {3n + 1} \right)}^{1/2}}}}$$ for all positive integers $$n$$.
IIT-JEE 1987
23
Use method of mathematical induction $${2.7^n} + {3.5^n} - 5$$ is divisible by $$24$$ for all $$n > 0$$
IIT-JEE 1985
24
Given $${s_n} = 1 + q + {q^2} + ...... + {q^2};$$
$${S_n} = 1 + {{q + 1} \over 2} + {\left( {{{q + 1} \over 2}} \right)^2} + ........ + {\left( {{{q + 1} \over 2}} \right)^n}\,\,\,,q \ne 1$$
Prove that $${}^{n + 1}{C_1} + {}^{n + 1}{C_2}{s_1} + {}^{n + 1}{C_3}{s_2} + ..... + {}^{n + 1}{C_n}{s_n} = {2^n}{S_n}$$
IIT-JEE 1984
25
If $$p$$ be a natural number then prove that $${p^{n + 1}} + {\left( {p + 1} \right)^{2n - 1}}$$ is divisible by $${p^2} + p + 1$$ for every positive integer $$n$$.
IIT-JEE 1984
26
Use mathematical Induction to prove : If $$n$$ is any odd positive integer, then $$n\left( {{n^2} - 1} \right)$$ is divisible by 24.
IIT-JEE 1983
27
If $${\left( {1 + x} \right)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_n}{x^n}$$ then show that the sum of the products of the $${C_i}s$$ taken two at a time, represented $$\sum\limits_{0 \le i < j \le n} {\sum {{C_i}{C_j}} } $$ is equal to $${2^{2n - 1}} - {{\left( {2n} \right)!} \over {2{{\left( {n!} \right)}^2}}}$$
IIT-JEE 1983
28
Prove that $${7^{2n}} + \left( {{2^{3n - 3}}} \right)\left( {3n - 1} \right)$$ is divisible by 25 for any natural number $$n$$.
IIT-JEE 1982
29
Given that $${C_1} + 2{C_2}x + 3{C_3}{x^2} + ......... + 2n{C_{2n}}{x^{2n - 1}} = 2n{\left( {1 + x} \right)^{2n - 1}}$$
where $${C_r} = {{\left( {2n} \right)\,!} \over {r!\left( {2n - r} \right)!}}\,\,\,\,\,r = 0,1,2,\,............,2n$$
Prove that $${C_1}^2 - 2{C_2}^2 + 3{C_3}^2 - ............ - 2n{C_{2n}}^2 = {\left( { - 1} \right)^n}n{C_n}.$$
IIT-JEE 1979