Straight Lines and Pair of Straight Lines
Practice Questions
MCQ (Single Correct Answer)
1

Let S denote the locus of the point of intersection of the pair of lines

$4x - 3y = 12\alpha$,

$4\alpha x + 3\alpha y = 12$,

where $\alpha$ varies over the set of non-zero real numbers. Let T be the tangent to S passing through the points $(p, 0)$ and $(0, q)$, $q > 0$, and parallel to the line $4x - \frac{3}{\sqrt{2}} y = 0$.

Then the value of $pq$ is :

JEE Advanced 2025 Paper 2 Online
2
For $$a > b > c > 0,$$ the distance between $$(1, 1)$$ and the point of intersection of the lines $$ax + by + c = 0$$ and $$bx + ay + c = 0$$ is less than $$\left( {2\sqrt 2 } \right)$$. Then
JEE Advanced 2013 Paper 1 Offline
3
A straight line $$L$$ through the point $$(3, -2)$$ is inclined at an angle $${60^ \circ }$$ to the line $$\sqrt {3x} + y = 1.$$ If $$L$$ also intersects the x-axis, then the equation of $$L$$ is
IIT-JEE 2011 Paper 1 Offline
4

Consider three points $$P = ( - \sin (\beta - \alpha ), - cos\beta ),Q = (cos(\beta - \alpha ),\sin \beta )$$ and $$R = (\cos (\beta - \alpha + \theta ),\sin (\beta - \theta ))$$ where $$0 < \alpha ,\beta ,\theta < {\pi \over 4}$$. Then :

IIT-JEE 2008 Paper 2 Offline
5

Consider the lines given by:

$${L_1}:x + 3y - 5 = 0$$

$${L_2}:3x - ky - 1 = 0$$

$${L_3}:5x + 2y - 12 = 0$$

Match the Statement/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) L$$_1$$, L$$_2$$, L$$_3$$ are concurrent, if (P) $$K = - 9$$
(B) One of L$$_1$$, L$$_2$$, L$$_3$$ is parallel to atleast one of the other two, if (Q) $$K = - {6 \over 5}$$
(C) L$$_1$$, L$$_2$$, L$$_3$$ form a triangle, if (R) $$K = {5 \over 6}$$
(D) L$$_1$$, L$$_2$$, L$$_3$$ do not form a triangle, if (S) $$K = 5$$

IIT-JEE 2008 Paper 2 Offline
6

Let a and b be non-zero real numbers. Then, the equation

$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :

IIT-JEE 2008 Paper 1 Offline
7
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

IIT-JEE 2007
8
Let $$O\left( {0,0} \right),P\left( {3,4} \right),Q\left( {6,0} \right)$$ be the vertices of the triangles $$OPQ$$. The point $$R$$ inside the triangle $$OPQ$$ is such that the triangles $$OPR$$, $$PQR$$, $$OQR$$ are of equal area. The coordinates of $$R$$ are
IIT-JEE 2007
9
Area of the triangle formed by the line $$x + y = 3$$ and angle bisectors of the pair of straight line $${x^2} - {y^2} + 2y = 1$$ is
IIT-JEE 2004 Screening
10
The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $$\left( {0,0} \right),\left( {0,21} \right)$$ and $$\left( {21,0} \right)$$, is
IIT-JEE 2003 Screening
11
Orthocentre of triangle with vertices $$\left( {0,0} \right),\left( {3,4} \right)$$ and $$\left( {4,0} \right)$$ is
IIT-JEE 2003 Screening
12
The pair of lines represented by
$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$ are perpendicular to each other for
IIT-JEE 2002
13
If the pair of lines $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$ intersect on the $$y$$ axis then
IIT-JEE 2002
14
Locus of mid point of the portion between the axes of $$x$$ $$\cos \alpha + y\sin \alpha = p$$ where $$p$$ is constant is
IIT-JEE 2002
15
A triangle with vertices $$(4, 0), (-1, -1), (3, 5)$$is
IIT-JEE 2002
16
A straight line through the origin $$O$$ meets the parallel lines $$4x+2y=9$$ and $$2x+y+6=0$$ at points $$P$$ and $$Q$$ respectively. Then the point $$O$$ divides the segemnt $$PQ$$ in the ratio
IIT-JEE 2002 Screening
17
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three points.
Then the equation of the bisector of the angle $$PQR$$ is
IIT-JEE 2002 Screening
18
Let $$0 < \alpha < {\pi \over 2}$$ be fixed angle. If $$P = \left( {\cos \theta ,\,\sin \theta } \right)$$ and $$Q = \left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$ then $$Q$$ is obtained from $$P$$ by
IIT-JEE 2002 Screening
19
Area of the parallelogram formed by the lines $$y = mx$$, $$y = mx + 1$$, $$y = nx$$ and $$y = nx + 1$$ equals
IIT-JEE 2001 Screening
20
The number of integer values of $$m$$, for which the $$x$$-coordinate of the point of intersection of the lines $$3x + 4y = 9$$ and $$y = mx + 1$$ is also an integer, is
IIT-JEE 2001 Screening
21
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
IIT-JEE 2000 Screening
22
Let $$PS$$ be the median of the triangle with vertices $$P(2, 2),$$ $$Q(6, -1)$$ and $$R(7, 3).$$ The equation of the line passing through $$(1, -1)$$ and parallel to $$PS$$ is
IIT-JEE 2000 Screening
23
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
IIT-JEE 1999
24
If $${x_1},\,{x_2},\,{x_3}$$ as well as $${y_1},\,{y_2},\,{y_3}$$, are in G.P. with the same common ratio, then the points $$\left( {{x_1},\,{y_1}} \right),\left( {{x_2},\,{y_2}} \right)$$ and $$\left( {{x_3},\,{y_3}} \right).$$
IIT-JEE 1999
25
If $$\left( {P\left( {1,2} \right),\,Q\left( {4,6} \right),\,R\left( {5,7} \right)} \right)$$ and $$S\left( {a,b} \right)$$ are the vertices of a parrallelogram $$PQRS,$$ then
IIT-JEE 1998
26
The diagonals of a parralleogram $$PQRS$$ are along the lines $$x + 3y = 4$$ and $$6x - 2y = 7$$. Then $$PQRS$$ must be a.
IIT-JEE 1998
27
The orthocentre of the triangle formed by the lines $$xy=0$$ and $$x+y=1$$ is
IIT-JEE 1995
28
The locus of a variable point whose distance from $$\left( { - 2,\,0} \right)$$ is $$2/3$$ times its distance from the line $$x = - {9 \over 2}$$ is
IIT-JEE 1994
29
The equations to a pair of opposites sides of parallelogram are $${x^2} - 5x + 6 = 0$$ and $${y^2} - 6y + 5 = 0,$$ the equations to its diagonals are
IIT-JEE 1994
30
If the sum of the distances of a point from two perpendicular lines in a plane is 1, then its locus is
IIT-JEE 1992
31
Line $$L$$ has intercepts $$a$$ and $$b$$ on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line $$L$$ has intercepts $$p$$ and $$q$$, then
IIT-JEE 1990
32
If $$P=(1, 0),$$ $$Q=(-1, 0)$$ and $$R=(2, 0)$$ are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$ is
IIT-JEE 1988
33
A vector $$\overline a $$ has components $$2p$$ and $$1$$ with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, $$\overline a $$ has components $$p + 1$$ and $$1$$, then
IIT-JEE 1986
34
The points $$\left( {0,{8 \over 3}} \right),\,\,\left( {1,\,3} \right)$$ and $$\left( {82,\,30} \right)$$ are vertices of
IIT-JEE 1986
35
The straight lines $$x + y = 0,\,3x + y - 4 = 0,\,x + 3y - 4 = 0$$ form a triangle which is
IIT-JEE 1983
36
The point $$\,\left( {4,\,1} \right)$$ undergoes the following three transformations successively.
Reflection about the line $$y=x$$.
Translation through a distance 2 units along the positive direction of x-axis.
Rotation through an angle $$p/4$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.
IIT-JEE 1980
37
The points $$\left( { - a,\, - b} \right),\,\left( {0,\,0} \right),\,\left( {a,\,b} \right)$$ and $$\left( {{a^2},\,ab} \right)$$ are :
IIT-JEE 1979
Numerical
1
Consider the lines L1 and L2 defined by

$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$

For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.

The value of $$\lambda$$2 is __________.
JEE Advanced 2021 Paper 1 Online
2
Consider the lines L1 and L2 defined by

$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$

For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.

The value of D is __________.
JEE Advanced 2021 Paper 1 Online
3
For a point $$P$$ in the plane, Let $${d_1}\left( P \right)$$ and $${d_2}\left( P \right)$$ be the distance of the point $$P$$ from the lines $$x - y = 0$$ and $$x + y = 0$$ respectively. The area of the region $$R$$ consisting of all points $$P$$ lying in the first quadrant of the plane and satisfying $$2 \le {d_1}\left( P \right) + {d_2}\left( P \right) \le 4$$, is
JEE Advanced 2014 Paper 1 Offline
Subjective
1
The area of the triangle formed by intersection of a line parallel to $$x$$-axis and passing through $$P (h, k)$$ with the lines $$y = x $$ and $$x + y = 2$$ is $$4{h^2}$$. Find the locus of the point $$P$$.
IIT-JEE 2005
2
A straight line $$L$$ with negative slope passes through the point $$(8, 2)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q$$. Find the absolute minimum value of $$OP + OQ,$$ as $$L$$ varies, where $$O$$ is the origin.
IIT-JEE 2002
3
A straight line $$L$$ through the origin meets the lines $$x + y = 1$$ and $$x + y = 3$$ at $$P $$ and $$Q$$ respectively. Through $$P$$ and $$Q$$ two straight lines $${L_1}$$ and $${L_2}$$ are drawn, parallel to $$2x - y = 5$$ and $$3x + y = 5$$ respectively. Lines $${L_1}$$ and $${L_2}$$ intersect at $$R$$. Show that the locus of $$R$$, as $$L$$ varies is a straight line.
IIT-JEE 2002
4
Let $$a, b, c$$ be real numbers with $${a^2} + {b^2} + {c^2} = 1.$$ Show that

the equation $$\left| {\matrix{ {ax - by - c} & {bx + ay} & {cx + a} \cr {bx + ay} & { - ax + by - c} & {cy + b} \cr {cx + a} & {cy + b} & { - ax - by + c} \cr } } \right| = 0$$


represents a straight line.
IIT-JEE 2001
5
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
IIT-JEE 2000
6
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
IIT-JEE 2000
7
Using co-ordinate geometry, prove that the three altitudes of any triangle are concurrent.
IIT-JEE 1998
8
A rectangle $$PQRS$$ has its side $$PQ$$ parallel to the line $$y = mx$$ and vertices $$P, Q$$ and $$S$$ on the lines $$y = a, x = b$$ and $$x = -b,$$ respectively. Find the locus of the vertex $$R$$.
IIT-JEE 1996
9
Tagent at a point $${P_1}$$ {other than $$(0, 0)$$} on the curve $$y = {x^3}$$ meets the curve again at $${P_2}$$. The tangent at $${P_2}$$ meets the curve at $${P_3}$$, and so on. Show that the abscissae of $${P_1},\,{P_2},{P_3}......{P_n},$$ form a G.P. Also find the ratio.

[area $$\left( {\Delta {P_1},{P_2},{P_3}} \right)$$]/[area $$\left( {{P_2},{P_3},{P_4}} \right)$$]

IIT-JEE 1993
10
A line through $$A (-5, -4)$$ meets the line $$x + 3y + 2 = 0,$$ $$2x + y + 4 = 0$$ and $$x - y - 5 = 0$$ at the points $$B, C$$ and $$D$$ respectively. If $${\left( {15/AB} \right)^2} + {\left( {10/AC} \right)^2} = {\left( {6/AD} \right)^2},$$ find the equation of the line.
IIT-JEE 1993
11
Determine all values of $$\alpha $$ for which the point $$\left( {\alpha ,\,{\alpha ^2}} \right)$$ lies insides the triangle formed by the lines $$$\matrix{ {2x + 3y - 1 = 0} \cr {x + 2y - 3 = 0} \cr {5x - 6y - 1 = 0} \cr } $$$
IIT-JEE 1992
12
Show that all chords of the curve $$3{x^2} - {y^2} - 2x + 4y = 0,$$ which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.
IIT-JEE 1991
13
Find the equation of the line passing through the point $$(2, 3)$$ and making intercept of length 2 units between the lines $$y + 2x = 3$$ and $$y + 2x = 5$$. IIT-JEE 1991 Mathematics - Straight Lines and Pair of Straight Lines Question 7 English
IIT-JEE 1991
14
A line cuts the $$x$$-axis at $$A (7, 0)$$ and the $$y$$-axis at $$B (0, -5)$$. A variable line $$PQ$$ is drawn perpendicular to $$AB$$ cutting the $$x$$axis in $$P$$ and they $$Y$$-axis in $$Q$$. If $$AQ$$ and $$BP$$ intersect at $$R$$, find the locus of R.
IIT-JEE 1990
15
Straight lines $$3x + 4y = 5$$ and $$4x - 3y = 15$$ intersect at the point $$A$$. Points $$B$$ and $$C$$ are choosen on these two lines such that $$AB = AC$$. Determine the possible equations of the line $$BC$$ passing through the point $$(1, 2)$$.
IIT-JEE 1990
16
Let $$ABC$$ be a triangle with $$AB = AC$$. If $$D$$ is the midpoint of $$BC, E$$ is the foot of the perpendicular drawn from $$D$$ to $$AC$$ and $$F$$ the mid-point of $$DE$$, prove that $$AF$$ is perpendicular to $$BE$$.
IIT-JEE 1989
17
Lines$${L_1} = ax + by + c = 0$$ and $${L_2} = lx + my + n = 0$$ intersect at the point $$P$$ and make an angle $$\theta $$ with each other. Find the equation of a line $$L$$ different from $${L_2}$$ which passes through $$P$$ and makes the same angle $$\theta $$ with $${L_1}$$.
IIT-JEE 1988
18
One of the diameters of the circle circumscribing the rectangle $$ABCD$$ is $$4y = x + 7$$. If $$A$$ and $$B$$ are the points $$(-3, 4)$$ and $$(5, 4)$$ respectively, then find the area of rectangle.
IIT-JEE 1985
19
Two sides of rhombus $$ABCD$$ are parallel to the lines $$y = x + 2$$ and $$y = 7x + 3$$. If the diagonals of the rhombus intersect at the point $$(1, 2)$$ and the vertex $$A$$ is on the $$y$$-axis, find possible co-ordinates of $$A$$.
IIT-JEE 1985
20
Two equal sides of an isosceles triangle are given by the equations $$7x - y + 3 = 0$$ and $$x + y - 3 = 0$$ and its thirds side passes through the point $$(1, -10)$$. Determine the equation of the third side.
IIT-JEE 1984
21
The vertices of a triangle are
$$\left[ {a{t_1}{t_2},\,\,a\left( {{t_1} + {t_2}} \right)} \right],\,\,\left[ {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right],\,\,\left[ {a{t_3}{t_1},\,a\left( {{t_3} + {t_1}} \right)} \right]$$. Find the orthocentre of the triangle.
IIT-JEE 1983
22
The coordinates of $$A, B, C$$ are $$(6, 3), (-3, 5), (4, -2)$$ respectively, and $$P$$ is any point $$(x, y)$$. Show that the ratio of the area of the triangles $$\Delta $$ $$PBC$$ and $$\Delta $$$$ABC$$ is $$\left| {{{x + y - 2} \over 7}} \right|$$
IIT-JEE 1983
23
The end $$A, B$$ of a straight line segment of constant length $$c$$ slide upon the fixed rectangular axes $$OX, OY$$ respectively. If the rectangle $$OAPB$$ be completed, then show that the locus of the foot of the perpendicular drawn from $$P$$ to $$AB$$ is $${x^{{2 \over 3}}} + {y^{{2 \over 3}}} = {c^{{2 \over 3}}}$$
IIT-JEE 1983
24
A straight line $$L$$ is perpendicular to the line $$5x - y = 1.$$ The area of the triangle formed by the line $$L$$ and the coordinate axes is $$5$$. Find the equation of the Line $$L$$.
IIT-JEE 1980
25
(a) Two vertices of a triangle are $$(5, -1)$$ and $$(-2, 3).$$ If the orthocentre of the triangle is the origin, find the coordinates of the third point.
(b) Find the equation of the line which bisects the obtuse angle between the lines $$x - 2y + 4 = 0$$ and $$4x - 3y + 2 = 0$$.
IIT-JEE 1979
26
One side of rectangle lies along the line $$4x + 7y + 5 = 0.$$ Two of its vertices are $$(-3, 1)$$ and $$(1, 1).$$ Find the equations of the other three sides.
IIT-JEE 1978
27
A straight line segment of length $$\ell $$ moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio $$1 : 2$$
IIT-JEE 1978
28
The area of a triangle is $$5$$. Two of its vertices are $$A\left( {2,1} \right)$$ and $$B\left( {3, - 2} \right)$$. The third vertex $$C$$ lies on $$y = x + 3$$. Find $$C$$.
IIT-JEE 1978