1
IIT-JEE 2002
Subjective
+5
-0
A straight line $$L$$ with negative slope passes through the point $$(8, 2)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q$$. Find the absolute minimum value of $$OP + OQ,$$ as $$L$$ varies, where $$O$$ is the origin.
2
IIT-JEE 2002
Subjective
+5
-0
A straight line $$L$$ through the origin meets the lines $$x + y = 1$$ and $$x + y = 3$$ at $$P $$ and $$Q$$ respectively. Through $$P$$ and $$Q$$ two straight lines $${L_1}$$ and $${L_2}$$ are drawn, parallel to $$2x - y = 5$$ and $$3x + y = 5$$ respectively. Lines $${L_1}$$ and $${L_2}$$ intersect at $$R$$. Show that the locus of $$R$$, as $$L$$ varies is a straight line.
3
IIT-JEE 2001
Subjective
+6
-0
Let $$a, b, c$$ be real numbers with $${a^2} + {b^2} + {c^2} = 1.$$ Show that

the equation $$\left| {\matrix{ {ax - by - c} & {bx + ay} & {cx + a} \cr {bx + ay} & { - ax + by - c} & {cy + b} \cr {cx + a} & {cy + b} & { - ax - by + c} \cr } } \right| = 0$$


represents a straight line.
4
IIT-JEE 2000
Subjective
+10
-0
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
JEE Advanced Subjects