Algebra
Quadratic Equation and Inequalities
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseSequences and Series
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMathematical Induction and Binomial Theorem
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMatrices and Determinants
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Permutations and Combinations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseProbability
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseVector Algebra
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of False3D Geometry
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveStatistics
MCQ (Single Correct Answer)Trigonometry
Trigonometric Functions & Equations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseInverse Trigonometric Functions
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCoordinate Geometry
Straight Lines and Pair of Straight Lines
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseCircle
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseParabola
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCalculus
Limits, Continuity and Differentiability
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Differentiation
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Derivatives
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseDefinite Integration
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Integration
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Subjective1
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Consider the matrix
$$ P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}. $$
Let the transpose of a matrix $X$ be denoted by $X^T$. Then the number of $3 \times 3$ invertible matrices $Q$ with integer entries, such that
$$ Q^{-1} = Q^T \quad \text{and} \quad PQ = QP, $$
is
2
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $\alpha$ and $\beta$ be the distinct roots of the equation $x^2+x-1=0$. Consider the set $T=\{1, \alpha, \beta\}$. For a $3 \times 3$ matrix $M=\left(a_{i j}\right)_{3 \times 3}$, define $R_i=a_{i 1}+a_{i 2}+a_{i 3}$ and $C_j=a_{1 j}+a_{2 j}+a_{3 j}$ for $i=1,2,3$ and $j=1,2,3$.
Match each entry in List-I to the correct entry in List-II.
The correct option is
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) The number of matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ R_i = C_j = 0 $ for all $ i, j $, is | (1) 1 |
(Q) The number of symmetric matrices $ M = (a_{ij})_{3x3} $ with all entries in $ T $ such that $ C_j = 0 $ for all $ j $, is | (2) 12 |
(R) Let $ M = (a_{ij})_{3x3} $ be a skew symmetric matrix such that $ a_{ij} \in T $ for $ i > j $. Then the number of elements in the set $ \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{12} \\ 0 \\ a_{13} \end{pmatrix} \right\} $ is |
(3) infinite |
(S) Let $ M = (a_{ij})_{3x3} $ be a matrix with all entries in $ T $ such that $ R_i = 0 $ for all $ i $. Then the absolute value of the determinant of $ M $ is | (4) 6 |
The correct option is
3
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $\alpha, \beta$ and $\gamma$ be real numbers. Consider the following system of linear equations
$$ \begin{aligned} & x+2 y+z=7 \\\\ & x+\alpha z=11 \\\\ & 2 x-3 y+\beta z=\gamma \end{aligned} $$
Match each entry in List-I to the correct entries in List-II.
The correct option is:
$$ \begin{aligned} & x+2 y+z=7 \\\\ & x+\alpha z=11 \\\\ & 2 x-3 y+\beta z=\gamma \end{aligned} $$
Match each entry in List-I to the correct entries in List-II.
List - I | List - II |
---|---|
(P) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has | (1) a unique solution |
(Q) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has | (2) no solution |
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has | (3) infinitely many solutions |
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has | (4) $x=11, y=-2$ and $z=0$ as a solution |
(5) $x=-15, y=4$ and $z=0$ as a solution |
The correct option is:
4
JEE Advanced 2022 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
If $M=\left(\begin{array}{rr}\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right)$, then which of the
following matrices is equal to $M^{2022} ?$
following matrices is equal to $M^{2022} ?$
Questions Asked from MCQ (Single Correct Answer)
JEE Advanced 2025 Paper 1 Online (1) JEE Advanced 2024 Paper 1 Online (1) JEE Advanced 2023 Paper 1 Online (1) JEE Advanced 2022 Paper 2 Online (1) JEE Advanced 2022 Paper 1 Online (1) JEE Advanced 2019 Paper 1 Offline (1) JEE Advanced 2017 Paper 2 Offline (1) JEE Advanced 2016 Paper 2 Offline (1) IIT-JEE 2012 Paper 2 Offline (1) IIT-JEE 2012 Paper 1 Offline (1) IIT-JEE 2011 Paper 1 Offline (3) IIT-JEE 2011 Paper 2 Offline (1) IIT-JEE 2010 Paper 1 Offline (4) IIT-JEE 2009 Paper 1 Offline (3) IIT-JEE 2008 Paper 1 Offline (1)
JEE Advanced Subjects
Physics
Mechanics
Electricity
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry