1
JEE Advanced 2025 Paper 2 Online
Numerical
+4
-0

Let

$$ \alpha=\frac{1}{\sin 60^{\circ} \sin 61^{\circ}}+\frac{1}{\sin 62^{\circ} \sin 63^{\circ}}+\cdots+\frac{1}{\sin 118^{\circ} \sin 119^{\circ}} $$

Then the value of

$$ \left(\frac{\operatorname{cosec} 1^{\circ}}{\alpha}\right)^2 $$

is _____________.

Your input ____
2
JEE Advanced 2023 Paper 2 Online
Numerical
+3
-0
Consider an obtuse angled triangle $A B C$ in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1.
$$ \text { Then the inradius of the triangle } A B C \text { is } $$ :
Your input ____
3
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Let $\alpha$ and $\beta$ be real numbers such that $-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}$.

If $\sin (\alpha+\beta)=\frac{1}{3}$ and $\cos (\alpha-\beta)=\frac{2}{3}$, then the greatest integer less than or equal to

$$ \left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^{2} $$ is
Your input ____
4
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Let f : R $$ \to $$ R be a differentiable function with f(0) = 1 and satisfying the equation f(x + y) = f(x) f'(y) + f'(x) f(y) for all x, y$$ \in $$ R.

Then, the value of loge(f(4)) is ...........
Your input ____
JEE Advanced Subjects