1
JEE Advanced 2025 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2

Let denote the set of all natural numbers, and denote the set of all integers. Consider the functions f: ℕ → ℤ and g: ℤ → ℕ defined by

$$ f(n) = \begin{cases} \frac{(n + 1)}{2} & \text{if } n \text{ is odd,} \\ \frac{(4-n)}{2} & \text{if } n \text{ is even,} \end{cases} $$

and

$$ g(n) = \begin{cases} 3 + 2n & \text{if } n \ge 0 , \\ -2n & \text{if } n < 0 . \end{cases} $$

Define $$(g \circ f)(n) = g(f(n))$$ for all $n \in \mathbb{N}$, and $$(f \circ g)(n) = f(g(n))$$ for all $n \in \mathbb{Z}$.

Then which of the following statements is (are) TRUE?

A

g $\circ $ f is NOT one-one and g $\circ $ f is NOT onto

B

f $\circ $ g is NOT one-one but f $\circ $ g is onto

C

g is one-one and g is onto

D

f is NOT one-one but f is onto

2
JEE Advanced 2023 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is(are) true?
A
There are infinitely many functions from $S$ to $T$
B
There are infinitely many strictly increasing functions from $S$ to $T$
C
The number of continuous functions from $S$ to $T$ is at most 120
D
Every continuous function from $S$ to $T$ is differentiable
3
JEE Advanced 2023 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^3}{3}-x^2+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y < f(x)\}$ be called the red region. Let $L_h=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true?
A
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_h$ equals the area of the green region below the line $L_h$
B
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line $L_h$ equals the area of the red region below the line $L_h$
C
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_h$ equals the area of the red region below the line $L_h$
D
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line $L_h$ equals the area of the green region below the line $L_k$
4
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2

Let $$|M|$$ denote the determinant of a square matrix $$M$$. Let $$g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$$ be the function defined by

$$ g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1} $$

where

$$ f(\theta)=\frac{1}{2}\left|\begin{array}{ccc} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{array}\right|+\left|\begin{array}{ccc} \sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{e}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{e}\left(\frac{\pi}{4}\right) & \tan \pi \end{array}\right| . $$

Let $$p(x)$$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $$g(\theta)$$, and $$p(2)=2-\sqrt{2}$$. Then, which of the following is/are TRUE ?

A
$$p\left(\frac{3+\sqrt{2}}{4}\right)<0$$
B
$$p\left(\frac{1+3 \sqrt{2}}{4}\right)>0$$
C
$$p\left(\frac{5 \sqrt{2}-1}{4}\right)>0$$
D
$$p\left(\frac{5-\sqrt{2}}{4}\right)<0$$
JEE Advanced Subjects