1
JEE Advanced 2025 Paper 2 Online
Numerical
+4
-0

Let $\mathbb{R}$ denote the set of all real numbers. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow(0,4)$ be functions defined by

$$ f(x)=\log _e\left(x^2+2 x+4\right), \text { and } g(x)=\frac{4}{1+e^{-2 x}} $$

Define the composite function $f \circ g^{-1}$ by $\left(f \circ g^{-1}\right)(x)=f\left(g^{-1}(x)\right)$, where $g^{-1}$ is the inverse of the function $g$.

Then the value of the derivative of the composite function $f \circ g^{-1}$ at $x=2$ is ________________.

Your input ____
2
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the set $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to :
Your input ____
3
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Considering only the principal values of the inverse trigonometric functions, the value of

$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$

is
Your input ____
4
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
The value of

$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$

in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
Your input ____
JEE Advanced Subjects