MCQ (More than One Correct Answer)
1

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right)$ be two distinct points on the ellipse

$$ \frac{x^2}{9}+\frac{y^2}{4}=1 $$

such that $y_1>0$, and $y_2>0$. Let $C$ denote the circle $x^2+y^2=9$, and $M$ be the point $(3,0)$.

Suppose the line $x=x_1$ intersects $C$ at $R$, and the line $x=x_2$ intersects C at $S$, such that the $y$-coordinates of $R$ and $S$ are positive. Let $\angle R O M=\frac{\pi}{6}$ and $\angle S O M=\frac{\pi}{3}$, where $O$ denotes the origin $(0,0)$. Let $|X Y|$ denote the length of the line segment $X Y$.

Then which of the following statements is (are) TRUE?

JEE Advanced 2025 Paper 2 Online
2
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the points $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
JEE Advanced 2023 Paper 1 Online
3
Define the collections {E1, E2, E3, ...} of ellipses and {R1, R2, R3.....} of rectangles as follows :

$${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$

R1 : rectangle of largest area, with sides parallel to the axes, inscribed in E1;

En : ellipse $${{{x^2}} \over {a_n^2}} + {{{y^2}} \over {b_n^2}} = 1$$ of the largest area inscribed in $${R_{n - 1}},n > 1$$;

Rn : rectangle of largest area, with sides parallel to the axes, inscribed in En, n > 1.

Then which of the following options is/are correct?
JEE Advanced 2019 Paper 1 Offline
4
Consider two straight lines, each of which is tangent to both the circle x2 + y2 = (1/2) and the parabola y2 = 4x. Let these lines intersect at the point Q. Consider the ellipse whose centre is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $$\sqrt 2 $$, then which of the following statement(s) is (are) TRUE?
JEE Advanced 2018 Paper 2 Offline
5
Let $${E_1}$$ and $${E_2}$$ be two ellipses whose centres are at the origin. The major axes of $${E_1}$$ and $${E_2}$$ lie along the $$x$$-axis and the $$y$$-axis, respectively. Let $$S$$ be the circle $${x^2} + {\left( {y - 1} \right)^2} = 2$$. The straight line $$x+y=3$$ touches the curves $$S$$, $${E_1}$$ and $${E_2}$$ at $$P, Q$$ and $$R$$ respectively. Suppose that $$PQ = PR = {{2\sqrt 2 } \over 3}$$. If $${e_1}$$ and $${e_2}$$ are the eccentricities of $${E_1}$$ and $${E_2}$$, respectively, then the correct expression(s) is (are)
JEE Advanced 2015 Paper 2 Offline
6
An ellipse intersects the hyperbola $$2{x^2} - 2{y^2} = 1$$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes then
IIT-JEE 2009 Paper 2 Offline
7
In a triangle $$ABC$$ with fixed base $$BC$$, the vertex $$A$$ moves such that $$$\cos \,B + \cos \,C = 4{\sin ^2}{A \over 2}.$$$

If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then

IIT-JEE 2009 Paper 1 Offline
8
Let $$P\left( {{x_1},{y_1}} \right)$$ and $$Q\left( {{x_2},{y_2}} \right),{y_1} < 0,{y_2} < 0,$$ be the end points of the latus rectum of the ellipse $${x^2} + 4{y^2} = 4.$$ The equations of parabolas with latus rectum $$PQ$$ are :
IIT-JEE 2008 Paper 1 Offline
9
On the ellipse $$4{x^2} + 9{y^2} = 1,$$ the points at which the tangents are parallel to the line $$8x = 9y$$ are
IIT-JEE 1999
MCQ (Single Correct Answer)
1

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the first quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. Two tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

JEE Advanced 2024 Paper 1 Online
2

Consider the ellipse

$$$ \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 $$$

Let $H(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

List-I List-II
(I) If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is (P) $\frac{(\sqrt{3}-1)^{4}}{8}$
(II) If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is (Q) 1
(III) If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is (R) $\frac{3}{4}$
(IV) If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is (S) $\frac{1}{2 \sqrt{3}}$
(T) $\frac{3 \sqrt{3}}{2}$

The correct option is:

JEE Advanced 2022 Paper 1 Online
3
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.

Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
JEE Advanced 2018 Paper 1 Offline
4
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

JEE Advanced 2016 Paper 2 Offline
5
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

JEE Advanced 2016 Paper 2 Offline
6
The common tangents to the circle $${x^2} + {y^2} = 2$$ and the parabola $${y^2} = 8x$$ touch the circle at the points $$P, Q$$ and the parabola at the points $$R$$, $$S$$. Then the area of the quadrilateral $$PQRS$$ is
JEE Advanced 2014 Paper 2 Offline
7
The ellipse $${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ is inscribed in a rectangle $$R$$ whose sides are parallel to the coordinate axes. Another ellipse $${E_2}$$ passing through the point $$(0, 4)$$ circumscribes the rectangle $$R$$. The eccentricity of the ellipse $${E_2}$$ is
IIT-JEE 2012 Paper 1 Offline
8

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The coordinates of $$A$$ and $$B$$ are

IIT-JEE 2010 Paper 2 Offline
9
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The orthocentre of the triangle $$PAB$$ is

IIT-JEE 2010 Paper 2 Offline
10

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is

IIT-JEE 2010 Paper 2 Offline
11
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
IIT-JEE 2009 Paper 2 Offline
12

Match the conics in Column I with the statements/expressions in Column II :

Column I Column II
(A) Circle (P) The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$.
(B) Parabola (Q) Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$.
(C) Ellipse (R) Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$
(D) Hyperbola (S) The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$.
(T) Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$.

IIT-JEE 2009 Paper 1 Offline
13
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
IIT-JEE 2009 Paper 1 Offline
14
Consider the two curves $${C_1}:{y^2} = 4x,\,{C_2}:{x^2} + {y^2} - 6x + 1 = 0$$. Then,
IIT-JEE 2008 Paper 1 Offline
15
The minimum area of triangle formed by the tangent to the $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ and coordinate axes is
IIT-JEE 2005 Screening
16
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
IIT-JEE 2004 Screening
17
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1,$$ is
IIT-JEE 2003 Screening
18
If $$P=(x, y)$$, $${F_1} = \left( {3,0} \right),\,{F_2} = \left( { - 3,0} \right)$$ and $$16{x^2} + 25{y^2} = 400,$$ then $$P{F_1} + P{F_2}$$ equals
IIT-JEE 1998
19
The number of values of $$c$$ such that the straight line $$y=4x + c$$ touches the curve $$\left( {{x^2}/4} \right) + {y^2} = 1$$ is
IIT-JEE 1998
20
The radius of the circle passing through the foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$, and having its centre at $$(0, 3)$$ is
IIT-JEE 1995 Screening
21
The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$ represents
IIT-JEE 1994
22
Let $$E$$ be the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ and $$C$$ be the circle $${x^2} + {y^2} = 9$$. Let $$P$$ and $$Q$$ be the points $$(1, 2)$$ and $$(2, 1)$$ respectively. Then
IIT-JEE 1994
Subjective
1
Find the equation of the common tangent in $${1^{st}}$$ quadrant to the circle $${x^2} + {y^2} = 16$$ and the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1$$. Also find the length of the intercept of the tangent between the coordinate axes.
IIT-JEE 2005
2
Prove that, in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
IIT-JEE 2002
3
Let $$P$$ be a point on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,0 < b < a$$. Let the line parallel to $$y$$-axis passing through $$P$$ meet the circle $${x^2} + {y^2} = {a^2}$$ at the point $$Q$$ such that $$P$$ and $$Q$$ are on the same side of $$x$$-axis. For two positive real numbers $$r$$ and $$s$$, find the locus of the point $$R$$ on $$PQ$$ such that $$PR$$ : $$RQ = r: s$$ as $$P$$ varies over the ellipse.
IIT-JEE 2001
4
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
IIT-JEE 2000
5
Find the co-ordinates of all the points $$P$$ on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, for which the area of the triangle $$PON$$ is maximum, where $$O$$ denotes the origin and $$N$$, the foot of the perpendicular from $$O$$ to the tangent at $$P$$.
IIT-JEE 1999
6
Consider the family of circles $${x^2} + {y^2} = {r^2},\,\,2 < r < 5$$. If in the first quadrant, the common taingent to a circle of this family and the ellipse $$4{x^2} + 25{y^2} = 100$$ meets the co-ordinate axes at $$A$$ and $$B$$, then find the equation of the locus of vthe mid-point of $$AB$$.
IIT-JEE 1999
7
A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that the tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.
IIT-JEE 1997
8
Let '$$d$$' be the perpendicular distance from the centre of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ are the two foci of the ellipse, then show that $${\left( {P{F_1} - P{F_2}} \right)^2} = 4{a^2}\left( {1 - {{{b^2}} \over {{d^2}}}} \right)$$.
IIT-JEE 1995