1
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${{z_1}}$$ and $${{z_2}}$$ be two distinct complex number and let z =( 1 - t)$${{z_1}}$$ + t$${{z_2}}$$ for some real number t with 0 < t < 1. IfArg (w) denote the principal argument of a non-zero complex number w, then
A
$$\left| {z - {z_1}} \right| + \left| {z - {z_2}} \right| = \left| {{z_1} - {z_2}} \right|$$
B
Arg $$(z - {z_1})$$ = Arg$$(z - {z_2})$$
C
$$\left| {\matrix{ {z - {z_1}} & {\overline z - {{\overline z }_1}} \cr {{z_2} - {z_1}} & {{{\overline z }_2} - {{\overline z }_1}} \cr } } \right|$$ = 0
D
Arg $$(z - {z_1})$$ = Arg$$({z_2} - {z_1})$$
2
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0

Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.

If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :

A
$\left|z-z_1\right|+\left|z-z_2\right|=\left|z_1-z_2\right|$
B
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z-z_2\right)$
C
$\left|\begin{array}{cc}z-z_1 & \bar{z}-\bar{z}_1 \\ z_2-z_1 & \bar{z}_2-\bar{z}_1\end{array}\right|=0$
D
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z_2-z_1\right)$
3
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
If $${\omega}$$ is an imaginary cube root of unity, then $${(1\, + \omega \, - {\omega ^2})^7}$$ equals
A
$$128\omega $$
B
$$ - 128\omega $$
C
$$128{\omega ^2}$$
D
$$ - 128{\omega ^2}$$
4
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
The value of the sum $$\,\,\sum\limits_{n = 1}^{13} {({i^n}} + {i^{n + 1}})$$ , where i = $$\sqrt { - 1} $$, equals
A
i
B
i - 1
C
- i
D
0
JEE Advanced Subjects