1
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $\overrightarrow{\mathrm{PR}}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $ \overrightarrow{\mathrm{SQ}}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram $P Q R S$ and $\overrightarrow{\mathrm{PT}}=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelopiped determined by the vectors $\overrightarrow{\mathrm{PT}}, \overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$ is :
A
5 units
B
20 units
C
10 units
D
30 units
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors such that $$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {29} $$ and $$\,\overrightarrow a \times \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) = \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) \times \widehat b,$$ then a possible value of $$\left( {\overrightarrow a + \overrightarrow b } \right).\left( { - 7\widehat i + 2\widehat j + 3\widehat k} \right)$$ is
A
$$0$$
B
$$3$$
C
$$4$$
D
$$8$$
3
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow v $$ in the plane of $$\overrightarrow a $$ and $$\overrightarrow b ,$$ whose projection on $$\overrightarrow c $$ is $${{1 \over {\sqrt 3 }}}$$ , is given by
A
$$\widehat i - 3\widehat j + 3\widehat k$$
B
$$-3\widehat i - 3\widehat j - \widehat k$$
C
$$3\widehat i - \widehat j + 3\widehat k$$
D
$$\widehat i + 3\widehat j - 3\widehat k$$
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-0
Match the statements given in Column -$$I$$ with the values given in Column-$$II.$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A) $$\,\,\,\,$$If $$\overrightarrow a = \widehat j + \sqrt 3 \widehat k,\overrightarrow b = - \widehat j + \sqrt 3 \widehat k$$ and $$\overrightarrow c = 2\sqrt 3 \widehat k$$ form a triangle, then the internal angle of the triangle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
(B)$$\,\,\,\,$$ If $$\int\limits_a^b {\left( {f\left( x \right) - 3x} \right)dx = {a^2} - {b^2},} $$ then the value of $$f$$ $$\left( {{\pi \over 6}} \right)$$ is
(C)$$\,\,\,\,$$ The value of $${{{\pi ^2}} \over {\ell n3}}\int\limits_{7/6}^{5/6} {\sec \left( {\pi x} \right)dx} $$ is
(D)$$\,\,\,\,$$ The maximum value of $$\left| {Arg\left( {{1 \over {1 - z}}} \right)} \right|$$ for $$\left| z \right| = 1,\,z \ne 1$$ is given by

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$II$$
(p)$$\,\,\,\,$$ $${{\pi \over 6}}$$
(q)$$\,\,\,\,$$ $${{2\pi \over 3}}$$
(r)$$\,\,\,\,$$ $${{\pi \over 3}}$$
(s)$$\,\,\,\,$$ $$\pi $$
(t) $$\,\,\,\,$$ $${{\pi \over 2}}$$

A
$$\left( A \right) \to q;\,\,\left( B \right) \to p;\,\,\left( C \right) \to s;\,\,\left( D \right) \to t$$
B
$$\left( A \right) \to q;\,\,\left( B \right) \to p;\,\,\left( C \right) \to t;\,\,\left( D \right) \to s$$
C
$$\left( A \right) \to p;\,\,\left( B \right) \to q;\,\,\left( C \right) \to s;\,\,\left( D \right) \to t$$
D
$$\left( A \right) \to q;\,\,\left( B \right) \to s;\,\,\left( C \right) \to p;\,\,\left( D \right) \to t$$
JEE Advanced Subjects