1
IIT-JEE 1984
Subjective
+4
-0
Given a function $$f(x)$$ such that
(i) it is integrable over every interval on the real line and
(ii) $$f(t+x)=f(x),$$ for every $$x$$ and a real $$t$$, then show that
the integral $$\int\limits_a^{a + 1} {f\,\,\left( x \right)} \,dx$$ is independent of a.
2
IIT-JEE 1984
Subjective
+2
-0
Evaluate the following $$\int\limits_0^{{1 \over 2}} {{{x{{\sin }^{ - 1}}x} \over {\sqrt {1 - {x^2}} }}dx} $$
3
IIT-JEE 1983
Subjective
+3
-0
Evaluate : $$\int\limits_0^{\pi /4} {{{\sin x + \cos x} \over {9 + 16\sin 2x}}dx} $$
4
IIT-JEE 1982
Subjective
+2
-0
Show that $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} = {\pi \over 2}\int\limits_0^\pi {f\left( {\sin x} \right)dx.} $$
JEE Advanced Subjects