1
IIT-JEE 1988
Subjective
+5
-0
Evaluate $$\int\limits_0^1 {\log \left[ {\sqrt {1 - x} + \sqrt {1 + x} } \right]dx} $$
2
IIT-JEE 1986
Subjective
+2
-0
Evaluate : $$\int\limits_0^\pi {{{x\,dx} \over {1 + \cos \,\alpha \,\sin x}},0 < \alpha < \pi } $$
3
IIT-JEE 1985
Subjective
+2
-0
Evaluate the following : $$\,\,\int\limits_0^{\pi /2} {{{x\sin x\cos x} \over {{{\cos }^4}x + {{\sin }^4}x}}} dx$$
4
IIT-JEE 1984
Subjective
+4
-0
Given a function $$f(x)$$ such that
(i) it is integrable over every interval on the real line and
(ii) $$f(t+x)=f(x),$$ for every $$x$$ and a real $$t$$, then show that
the integral $$\int\limits_a^{a + 1} {f\,\,\left( x \right)} \,dx$$ is independent of a.
JEE Advanced Subjects