1
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,

$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,

$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,

$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and

$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
A
$${\psi _1}(x) \le 1$$, for all x > 0
B
$${\psi _2}(x) \le 0$$, for all x > 0
C
$$f(x) \ge 1 - {e^{ - {x^2}}} - {2 \over 3}{x^3} + {2 \over 5}{x^5}$$, for all $$x \in \left( {0,{1 \over 2}} \right)$$
D
$$g(x) \le {2 \over 3}{x^3} - {2 \over 5}{x^5} + {1 \over 7}{x^7}$$, for all $$x \in \left( {0,{1 \over 2}} \right)$$
2
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
A
$${{{\pi ^2}} \over 4} - 2$$
B
$${{{\pi ^2}} \over 4} + 2$$
C
$${\pi ^2} - {e^{{\pi \over 2}}}$$
D
$${\pi ^2} + {e^{{\pi \over 2}}}$$
3
JEE Advanced 2015 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f'\left( x \right) = {{192{x^3}} \over {2 + {{\sin }^4}\,\pi x}}$$ for all $$x \in R\,\,$$ with $$f\left( {{1 \over 2}} \right) = 0$$.
If $$m \le \int\limits_{1/2}^1 {f\left( x \right)dx \le M,} $$ then the possible values of $$m$$ and $$M$$ are
A
$$m=13,$$ $$M=24$$
B
$$\,m = {1 \over 4},M = {1 \over 2}$$
C
$$m=-11,$$ $$M=0$$
D
$$m=1,$$ $$M=12$$
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt} $$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g\left( {{1 \over 2}} \right)$$ is

A
$$\pi $$
B
$$2\pi $$
C
$${\pi \over 2}$$
D
$${\pi \over 4}$$
JEE Advanced Subjects