1
IIT-JEE 1990
MCQ (Single Correct Answer)
+2
-0.5
Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx} $$ is
A
$$\pi $$
B
$$1$$
C
$$-1$$
D
$$0$$
2
IIT-JEE 1985
MCQ (Single Correct Answer)
+2
-0.5
For any integer $$n$$ the integral ...........
$$\int\limits_0^\pi {{e^{{{\cos }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} $$ has the value
A
$$\pi $$
B
$$1$$
C
$$0$$
D
none of these
3
IIT-JEE 1983
MCQ (Single Correct Answer)
+1
-0.25
The value of the integral $$\int\limits_0^{\pi /2} {{{\sqrt {\cot x} } \over {\sqrt {\cot x} + \sqrt {\tan x} }}dx} $$ is
A
$$\pi /4$$
B
$$\pi /2$$
C
$$\pi $$
D
none of these
4
IIT-JEE 1981
MCQ (Single Correct Answer)
+2
-0.5
The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,\,dx$$
A
$$-1$$
B
$$2$$
C
$$1 + {e^{ - 1}}$$
D
none of these
JEE Advanced Subjects