1
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Three lines $${L_1}:r = \lambda \widehat i$$, $$\lambda $$ $$ \in $$ R,

$${L_2}:r = \widehat k + \mu \widehat j$$, $$\mu $$ $$ \in $$ R and

$${L_3}:r = \widehat i + \widehat j + v\widehat k$$, v $$ \in $$ R are given.

For which point(s) Q on L2 can we find a point P on L1 and a point R on L3 so that P, Q and R are collinear?
A
$$\widehat k$$
B
$$\widehat k$$ + $$\widehat j$$
C
$$\widehat k$$ + $${1 \over 2}$$$$\widehat j$$
D
$$\widehat k$$ $$-$$ $${1 \over 2}$$$$\widehat j$$
2
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let L1 and L2 denote the lines

$$r = \widehat i + \lambda ( - \widehat i + 2\widehat j + 2\widehat k)$$, $$\lambda $$$$ \in $$ R

and $$r = \mu (2\widehat i - \widehat j + 2\widehat k),\,\mu \in R$$

respectively. If L3 is a line which is perpendicular to both L1 and L2 and cuts both of them, then which of the following options describe(s) L3?
A
$$r = {2 \over 9}(2\widehat i - \widehat j + 2\widehat k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
B
$$r = {1 \over 3}(2\widehat i + k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
C
$$r = {2 \over 9}(4\widehat i + \widehat j + \widehat k) + t(2\widehat i + 2\widehat j - \widehat k),\,t \in R$$
D
r = $$t(2\widehat i + 2\widehat j - \widehat k)$$, $$t \in R$$
3
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let P1 : 2x + y $$-$$ z = 3 and P2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is(are) TRUE?
A
The line of intersection of P1 and P2 has direction ratios 1, 2, $$-$$1
B
The line $${{3x - 4} \over 9} = {{1 - 3y} \over 9} = {z \over 3}$$ is perpendicular to the line of intersection of P1 and P2
C
The acute angle between P1 and P2 is 60$$^\circ $$
D
If P3 is the plane passing through the point (4, 2, $$-$$2) and perpendicular to the line of intersection of P1 and P2, then the distance of the point (2, 1, 1) from the plane P3 is $${2 \over {\sqrt 3 }}$$
4
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Consider a pyramid $$OPQRS$$ located in the first octant $$\left( {x \ge 0,y \ge 0,z \ge 0} \right)$$ with $$O$$ as origin, and $$OP$$ and $$OR$$ along the $$x$$-axis and the $$y$$-axis, respectively. The base $$OPQR$$ of the pyramid is a square with $$OP=3.$$ The point $$S$$ is directly above the mid-point, $$T$$ of diagonal $$OQ$$ such that $$TS=3.$$ Then
A
the acute angle between $$OQ$$ and $$OS$$ is $${\pi \over 3}$$
B
the equation of the plane containing the triangle $$OQS$$ is $$x-y=0$$
C
the length of the perpendicular from $$P$$ to the plane containing the triangle $$OQS$$ is $${3 \over {\sqrt 2 }}$$
D
the perpendicular distance from $$O$$ to the straight line containing $$RS$$ is $$\sqrt {{{15} \over 2}} $$
JEE Advanced Subjects