1
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of the integral $$\int\limits_0^1 {\sqrt {{{1 - x} \over {1 + x}}} dx} $$ is
A
$${\pi \over 2} + 1$$
B
$${\pi \over 2} - 1$$
C
$$-1$$
D
$$1$$
2
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$f\left( x \right) = \int\limits_{{x^2}}^{{x^2} + 1} {{e^{ - {t^2}}}} dt,$$ then $$f(x)$$ increases in
A
$$(-2, 2)$$
B
no value of $$x$$
C
$$\left( {0,\infty } \right)$$
D
$$\left( { - \infty ,0} \right)$$
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$l\left( {m,n} \right) = \int\limits_0^1 {{t^m}{{\left( {1 + t} \right)}^n}dt,} $$ then the expression for $$l(m, n)$$ in terms of $$l(m+n, n-1)$$ is
A
$${{{2^n}} \over {m + 1}} - {n \over {m + 1}}l\left( {m + 1,n - 1} \right)$$
B
$${n \over {m + 1}}l\left( {m + 1,n - 1} \right)$$
C
$${{{2^n}} \over {m + 1}} + {n \over {m + 1}}l\left( {m + 1,n - 1} \right)$$
D
$${m \over {n + 1}}l\left( {m + 1,n - 1} \right)$$
4
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
JEE Advanced Subjects