1
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
By appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.

Column - 1 Column - 2 Column - 3
(i) $${x^2} + {y^2} = a$$ $$my = {m^2}x + a$$ $$\left( {{a \over {{m^2}}},\,{{2a} \over m}} \right)$$
(ii) $${x^2}{a^2}{y^2} = {a^2}]$$ $$y = mx + a\sqrt {{m^2} + 1} $$ $$\left( {{{ - ma} \over {\sqrt {{m^2} + 1} }},\,{a \over {\sqrt {{m^2} + 1} }}} \right)$$
(iii) $${y^2} = 4ax$$ $$y = mx + \sqrt {{a^2}{m^2} - 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} + 1} }},\,{1 \over {\sqrt {{a^2}{m^2} + 1} }}} \right)$$
(iv) $${x^2} - {a^2}{y^2} = {a^2}$$ $$y = mx + \sqrt {{a^2}{m^2} + 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} - 1} }},\,{{ - 1} \over {\sqrt {{a^2}{m^2} - 1} }}} \right)$$
The tangent to a suitable conic (Column 1) at $$\left( {\sqrt 3 ,\,{1 \over 2}} \right)$$ is found to be $$\sqrt 3 x + 2y = 4$$, then which of the following options is the only CORRECT combination?
A
(IV) (iv) (S)
B
(II) (iv) (R)
C
(IV) (iii) (S)
D
(II) (ii) (R)
2
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Let $$P(6, 3)$$ be a point on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. If the normal at the point $$P$$ intersects the $$x$$-axis at $$(9, 0)$$, then the eccentricity of the hyperbola is
A
$$\sqrt {{5 \over 2}} $$
B
$$\sqrt {{3 \over 2}} $$
C
$${\sqrt 2 }$$
D
$${\sqrt 3 }$$
3
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The circle $${x^2} + {y^2} - 8x = 0$$ and hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ intersect at the points $$A$$ and $$B$$.

Equation of the circle with $$AB$$ as its diameter is

A
$${x^2} + {y^2} - 12x + 24 = 0$$
B
$${x^2} + {y^2} + 12x + 24 = 0$$
C
$${x^2} + {y^2} + 24x - 12 = 0$$
D
$${x^2} + {y^2} - 24x - 12 = 0$$
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The circle $${x^2} + {y^2} - 8x = 0$$ and hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ intersect at the points $$A$$ and $$B$$.

Equation of a common tangent with positive slope to the circle as well as to the hyperbola is

A
$$2x - \sqrt {5y} - 20 = 0$$
B
$$2x - \sqrt {5y} + 4 = 0$$
C
$$3x - 4y + 8 = 0$$
D
$$4x - 3y + 4 = 0$$
JEE Advanced Subjects