1
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
A hyperbola, having the transverse axis of length $$2\sin \theta ,$$ is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$ Then its equation is
A
$${x^2}\cos e{c^2}\theta - {y^2}{\sec ^2}\theta = 1$$
B
$${x^2}\cos e{c^2}\theta - {y^2}{\sec ^2}\theta = 1$$
C
$${x^2}{\sin ^2}\theta - {y^2}co{s^2}\theta = 1$$
D
$${x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta = 1$$
2
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the line $$62x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4$$, then the point of contact is
A
$$\left( { - 2,\,\sqrt 6 } \right)$$
B
$$\left( { - 5,\,2\sqrt 6 } \right)$$
C
$$\left( {{1 \over 2},{1 \over {\sqrt 6 }}} \right)$$
D
$$\left( {4, - \,\sqrt 6 } \right)$$
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
For hyperbola $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$ which of the following remains constant with change in $$'\alpha '$$
A
abscissae of vertices
B
abscissae of foci
C
eccentricity
D
directrix
4
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If $$x$$ $$=$$ $$9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the vcorresponding pair of tangents is
A
$$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C
$$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D
$$9{x^2} - 8{y^2} + 18x + 9 = 0$$
JEE Advanced Subjects