1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0

Match the statements/expressions in Column I with the open intervals in Column II :

Column I Column II
(A) Interval contained in the domain of definition of non-zero solutions of the differential equation $${(x - 3)^2}y' + y = 0$$ (P) $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
(B) Interval containing the value of the integral $$\int\limits_1^5 {(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)dx} $$ (Q) $$\left( {0,{\pi \over 2}} \right)$$
(C) Interval in which at least one of the points of local maximum of $${\cos ^2}x + \sin x$$ lies (R) $$\left( {{\pi \over 8},{{5\pi } \over 4}} \right)$$
(D) Interval in which $${\tan ^{ - 1}}(\sin x + \cos x)$$ is increasing (S) $$\left( {0,{\pi \over 8}} \right)$$
(T) $$( - \pi ,\pi )$$

A
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(S)
B
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (R); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(R)
C
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(S), (Q), (R), (T); (D)$$\to$$(S)
D
(A)$$\to$$(P), (T), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(S)
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let a solution $$y=y(x)$$ of the differential equation,

$$x\sqrt {{x^2} - 1} \,\,dy - y\sqrt {{y^2} - 1} \,dx = 0$$ satify $$y\left( 2 \right) = {2 \over {\sqrt 3 }}.$$

STATEMENT-1 : $$y\left( x \right) = \sec \left( {{{\sec }^{ - 1}}x - {\pi \over 6}} \right)$$ and

STATEMENT-2 : $$y\left( x \right)$$ given by $${1 \over y} = {{2\sqrt 3 } \over x} - \sqrt {1 - {1 \over {{x^2}}}} $$

A
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is a correct explanation for STATEMENT-1
B
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is NOT a correct explanation for STATEMENT-1
C
STATEMENT-1 is True, STATEMENT-2 is False
D
STATEMENT-1 is False , STATEMENT-2 is True
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
The differential equation $${{dy} \over {dx}} = {{\sqrt {1 - {y^2}} } \over y}$$ determines a family of circles with
A
variable radii and a fixed centre at $$(0,1)$$
B
variable radii and a fixed centre at $$(0,-1)$$
C
fixed radius $$1$$ and variable centres along the $$x$$-axis.
D
fixed radius $$1$$ and variable centrs along the $$y$$-axis.
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$y=y(x)$$ and it follows the relation $$x\cos \,y + y\,cos\,x = \pi $$ then $$y''(0)=$$
A
$$1$$
B
$$-1$$
C
$${\pi}$$
D
$$ - \pi $$
JEE Advanced Subjects