1
JEE Advanced 2021 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Let O be the origin and $$\overrightarrow {OA} = 2\widehat i + 2\widehat j + \widehat k$$ and $$\overrightarrow {OB} = \widehat i - 2\widehat j + 2\widehat k$$ and $$\overrightarrow {OC} = {1 \over 2}\left( {\overrightarrow {OB} - \lambda \overrightarrow {OA} } \right)$$ for some $$\lambda$$ > 0. If $$\left| {\overrightarrow {OB} \times \overrightarrow {OC} } \right| = {9 \over 2}$$, then which of the following statements is (are) TRUE?
A
Projection of $$\overrightarrow {OC} $$ on $$\overrightarrow {OA} $$ is $$ - {3 \over 2}$$
B
Area of the triangle OAB is $${9 \over 2}$$
C
Area of the triangle ABC is $${9 \over 2}$$
D
The acute angle between the diagonals of the parallelogram with adjacent sides $${\overrightarrow {OA} }$$ and $${\overrightarrow {OC} }$$ is $${\pi \over 3}$$
2
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let a and b be positive real numbers. Suppose $$PQ = a\widehat i + b\widehat j$$ and $$PS = a\widehat i - b\widehat j$$ are adjacent sides of a parallelogram PQRS. Let u and v be the projection vectors of $$w = \widehat i + \widehat j$$ along PQ and PS, respectively. If |u| + |v| = |w| and if the area of the parallelogram PQRS is 8, then which of the following statements is/are TRUE?
A
a + b = 4
B
a $$-$$ b = 2
C
The length of the diagonal PR of the parallelogram PQRS is 4
D
w is an angle bisector of the vectors PQ and PS
3
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and
$$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
A
There is exactly one choice for such $${\overrightarrow v }$$
B
There are infinitely many choices for such $${\overrightarrow v }$$
C
If $$\widehat u$$ lies in the $$xy$$-plane then $$\left| {{u_1}} \right| = \left| {{u_2}} \right|$$
D
If $$\widehat u$$ lies in the $$xz$$-plane then $$2\left| {{u_1}} \right| = \left| {{u_3}} \right|$$
4
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$\Delta PQR$$ be a triangle. Let $$\vec a = \overrightarrow {QR} ,\vec b = \overrightarrow {RP} $$ and $$\overrightarrow c = \overrightarrow {PQ} .$$ If $$\left| {\overrightarrow a } \right| = 12,\,\,\left| {\overrightarrow b } \right| = 4\sqrt 3 ,\,\,\,\overrightarrow b .\overrightarrow c = 24,$$ then which of the following is (are) true?
A
$${{{{\left| {\overrightarrow c } \right|}^2}} \over 2} - \left| {\overrightarrow a } \right| = 12$$
B
$${{{{\left| {\overrightarrow c } \right|}^2}} \over 2} + \left| {\overrightarrow a } \right| = 30$$
C
$$\left| {\overrightarrow a \times \overrightarrow b + \overrightarrow c \times \overrightarrow a } \right| = 48\sqrt 3 $$
D
$$\overrightarrow a .\overrightarrow b = - 72$$
JEE Advanced Subjects