1
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $g(x+y)=g(x) g(y)$ for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is _________.
Your input ____
2
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0

Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$ f(x)=\frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)}+\frac{2}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)} . $$

Then the number of solutions of $f(x)=0$ in $\mathbb{R}$ is _________.

Your input ____
3
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Let the function f : [0, 1] $$ \to $$ R be defined by

$$f(x) = {{{4^x}} \over {{4^x} + 2}}$$

Then the value of $$f\left( {{1 \over {40}}} \right) + f\left( {{2 \over {40}}} \right) + f\left( {{3 \over {40}}} \right) + ... + f\left( {{{39} \over {40}}} \right) - f\left( {{1 \over 2}} \right)$$ is ..........
Your input ____
4
JEE Advanced 2020 Paper 2 Offline
Numerical
+4
-0
Let the function $$f:(0,\pi ) \to R$$ be defined by $$f(\theta ) = {(\sin \theta + \cos \theta )^2} + {(\sin \theta - \cos \theta )^4}$$

Suppose the function f has a local minimum at $$\theta $$ precisely when $$\theta \in \{ {\lambda _1}\pi ,....,{\lambda _r}\pi \} $$, where $$0 < {\lambda _1} < ...{\lambda _r} < 1$$. Then the value of $${\lambda _1} + ... + {\lambda _r}$$ is .............
Your input ____
JEE Advanced Subjects