1
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let b be a nonzero real number. Suppose f : R $$ \to $$ R is a differentiable function such that f(0) = 1. If the derivative f' of f satisfies the equation $$f'(x) = {{f(x)} \over {{b^2} + {x^2}}}$$

for all x$$ \in $$R, then which of the following statements is/are TRUE?
A
If b > 0, then f is an increasing function
B
If b < 0, then f is a decreasing function
C
f(x) f($$-$$x) = 1 for all x$$ \in $$R
D
f(x) $$-$$f($$-$$x) = 0 for all x$$ \in $$R
2
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Which of the following inequalities is/are TRUE?
A
$$\int_0^1 {x\cos xdx\, \ge \,{3 \over 8}} $$
B
$$\int_0^1 {x\sin xdx\, \ge \,{3 \over {10}}} $$
C
$$\int_0^1 {{x^2}\cos xdx\, \ge \,{1 \over 2}} $$
D
$$\int_0^1 {{x^2}\sin xdx\, \ge \,{2 \over 9}} $$
3
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
If $$I = \sum\nolimits_{k = 1}^{98} {\int_k^{k + 1} {{{k + 1} \over {x(x + 1)}}} dx} $$, then
A
$$I > {\log _e}99$$
B
$$I < {\log _e}99$$
C
$$I < {{49} \over {50}}$$
D
$$I > {{49} \over {50}}$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let
$$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {{{{n^n}\left( {x + n} \right)\left( {x + {n \over 2}} \right)...\left( {x + {n \over n}} \right)} \over {n!\left( {{x^2} + {n^2}} \right)\left( {{x^2} + {{{n^2}} \over 4}} \right)....\left( {{x^2} + {{{n^2}} \over {{n^2}}}} \right)}}} \right)^{{x \over n}}},$$ for

all $$x>0.$$ Then
A
$$f\left( {{1 \over 2}} \right) \ge f\left( 1 \right)$$
B
$$f\left( {{1 \over 3}} \right) \le f\left( {{2 \over 3}} \right)$$
C
$$\,f'\left( 2 \right) \le 0$$
D
$$\,{{f'\left( 3 \right)} \over {f\left( 3 \right)}} \ge {{f'\left( 2 \right)} \over {f\left( 2 \right)}}$$
JEE Advanced Subjects