1
IIT-JEE 1996
Subjective
+3
-0
Let $${A_n}$$ be the area bounded by the curve $$y = {\left( {\tan x} \right)^n}$$ and the
lines $$x=0,$$ $$y=0,$$ and $$x = {\pi \over 4}.$$ Prove that for $$n > 2,$$
$${A_n} + {A_{n - 2}} = {1 \over {n - 1}}$$ and deduce $${1 \over {2n + 2}} < {A_n} < {1 \over {2n - 2}}.$$
2
IIT-JEE 1995
Subjective
+5
-0
Consider a square with vertices at $$(1,1), (-1,1), (-1,-1)$$ and $$(1, -1)$$. Let $$S$$ be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region $$S$$ and find its area.
3
IIT-JEE 1994
Subjective
+5
-0
In what ratio does the $$x$$-axis divide the area of the region
bounded by the parabolas $$y = 4x - {x^2}$$ and $$y = {x^2} - x?$$
4
IIT-JEE 1992
Subjective
+4
-0
Sketch the region bounded by the curves $$y = {x^2}$$ and
$$y = {2 \over {1 + {x^2}}}.$$ Find the area.
JEE Advanced Subjects