Algebra
Quadratic Equation and Inequalities
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseSequences and Series
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMathematical Induction and Binomial Theorem
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMatrices and Determinants
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Permutations and Combinations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseProbability
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseVector Algebra
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of False3D Geometry
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveStatistics
MCQ (Single Correct Answer)Trigonometry
Trigonometric Functions & Equations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseInverse Trigonometric Functions
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCoordinate Geometry
Straight Lines and Pair of Straight Lines
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseCircle
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseParabola
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCalculus
Limits, Continuity and Differentiability
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Differentiation
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Derivatives
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseDefinite Integration
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Integration
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Subjective1
IIT-JEE 1994
Subjective
+4
-0
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
2
IIT-JEE 1993
Subjective
+5
-0
In a triangle $$ABC, D$$ and $$E$$ are points on $$BC$$ and $$AC$$ respectively, such that $$BD=2DC$$ and $$AE=3EC.$$ Let $$P$$ be the point of intersection of $$AD$$ and $$BE.$$ Find $$BP/PE$$ using vector methods.
3
IIT-JEE 1991
Subjective
+4
-0
Determine the value of $$'c'$$ so that for all real $$x,$$ the vector
$$cx\widehat i - 6\widehat j - 3\widehat k$$ and $$x\widehat i + 2\widehat j + 2cx\widehat k$$ make an obtuse angle with each other.
$$cx\widehat i - 6\widehat j - 3\widehat k$$ and $$x\widehat i + 2\widehat j + 2cx\widehat k$$ make an obtuse angle with each other.
4
IIT-JEE 1990
Subjective
+3
-0
Let $$\overrightarrow A = 2\overrightarrow i + \overrightarrow k ,\,\overrightarrow B = \overrightarrow i + \overrightarrow j + \overrightarrow k ,$$ and $$\overrightarrow C = 4\overrightarrow i - 3\overrightarrow j + 7\overrightarrow k .$$ Determine a vector $$\overrightarrow R .$$ Satisfying $$\overrightarrow R \times \overrightarrow B = \overrightarrow C \times \overrightarrow B $$ and $$\overrightarrow R \,.\,\overrightarrow A = 0$$
Questions Asked from Subjective
IIT-JEE 2006 (1) IIT-JEE 2005 (1) IIT-JEE 2004 (1) IIT-JEE 2003 (1) IIT-JEE 2002 (1) IIT-JEE 2001 (3) IIT-JEE 1999 (1) IIT-JEE 1998 (2) IIT-JEE 1997 (1) IIT-JEE 1994 (1) IIT-JEE 1993 (1) IIT-JEE 1991 (1) IIT-JEE 1990 (1) IIT-JEE 1989 (2) IIT-JEE 1988 (1) IIT-JEE 1987 (1) IIT-JEE 1986 (1) IIT-JEE 1982 (2)
JEE Advanced Subjects
Physics
Mechanics
Electricity
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry