1
IIT-JEE 1997
MCQ (Single Correct Answer)
+2
-0.5
If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals
A
$$g\left( x \right) + g\left( \pi \right)$$
B
$$g\left( x \right) - g\left( \pi \right)$$
C
$$g\left( x \right) g\left( \pi \right)$$
D
$${{g\left( x \right)} \over {g\left( \pi \right)}}$$
2
IIT-JEE 1982
MCQ (Single Correct Answer)
+2
-0.5
The area bounded by the curves $$y=f(x)$$, the $$x$$-axis and the ordinates $$x=1$$ and $$x=b$$ is $$(b-1)$$ sin $$(3b+4)$$. Then $$f(x)$$ is
A
$$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B
$$\sin \left( {3x + 4} \right)$$
C
$$\sin \left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D
none of these
JEE Advanced Subjects