1
IIT-JEE 2003
Subjective
+4
-0
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
2
IIT-JEE 1996
Subjective
+5
-0
The position vectors of the vertices $$A, B$$ and $$C$$ of a tetrahedron $$ABCD$$ are $$\widehat i + \widehat j + \widehat k,\,\widehat i$$ and $$3\widehat i\,,$$ respectively. The altitude from vertex $$D$$ to the opposite face $$ABC$$ meets the median line through $$A$$ of the triangle $$ABC$$ at a point $$E.$$ If the length of the side $$AD$$ is $$4$$ and the volume of the tetrahedron is $${{2\sqrt 2 } \over 3},$$ find the position vector of the point $$E$$ for all its possible positions.
3
IIT-JEE 1983
Subjective
+2
-0
A vector $$\overrightarrow A $$ has components $${A_1},{A_2},{A_3}$$ in a right -handed rectangular Cartesian coordinate system $$oxyz.$$ The coordinate system is rotated about the $$x$$-axis through an angle $${\pi \over 2}.$$ Find the components of $$A$$ in the new coordinate system in terms of $${A_1},{A_2},{A_3}.$$
4
IIT-JEE 1978
Subjective
+2
-0
From a point $$O$$ inside a triangle $$ABC,$$ perpendiculars $$OD$$, $$OE, OF$$ are drawn to the sides $$BC, CA, AB$$ respectively. Prove that the perpendiculars from $$A, B, C$$ to the sides $$EF, FD, DE$$ are concurrent.
JEE Advanced Subjects