1
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$ f(x)=x^{2}+\frac{5}{12} \quad \text { and } \quad g(x)= \begin{cases}2\left(1-\frac{4|x|}{3}\right), & |x| \leq \frac{3}{4} \\ 0, & |x|>\frac{3}{4}\end{cases} $$

If $\alpha$ is the area of the region

$$ \left\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x| \leq \frac{3}{4}, 0 \leq y \leq \min \{f(x), g(x)\}\right\}, $$

then the value of $9 \alpha$ is
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let f1 : (0, $$\infty$$) $$\to$$ R and f2 : (0, $$\infty$$) $$\to$$ R be defined by $${f_1}(x) = \int\limits_0^x {\prod\limits_{j = 1}^{21} {{{(t - j)}^j}dt} } $$, x > 0 and $${f_2}(x) = 98{(x - 1)^{50}} - 600{(x - 1)^{49}} + 2450,x > 0$$, where, for any positive integer n and real numbers a1, a2, ....., an, $$\prod\nolimits_{i = 1}^n {{a_i}} $$ denotes the product of a1, a2, ....., an. Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function fi, i = 1, 2 in the interval (0, $$\infty$$).

The value of $$2{m_1} + 3{n_1} + {m_1}{n_1}$$ is ___________.
Your input ____
3
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let f1 : (0, $$\infty$$) $$\to$$ R and f2 : (0, $$\infty$$) $$\to$$ R be defined by $${f_1}(x) = \int\limits_0^x {\prod\limits_{j = 1}^{21} {{{(t - j)}^j}dt} } $$, x > 0 and $${f_2}(x) = 98{(x - 1)^{50}} - 600{(x - 1)^{49}} + 2450,x > 0$$, where, for any positive integer n and real numbers a1, a2, ....., an, $$\prod\nolimits_{i = 1}^n {{a_i}} $$ denotes the product of a1, a2, ....., an. Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function fi, i = 1, 2 in the interval (0, $$\infty$$).

The value of $$6{m_2} + 4{n_2} + 8{m_2}{n_2}$$ is ___________.
Your input ____
4
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
A farmer F1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1) and R(2, 0). From this land, a neighbouring farmer F2 takes away the region which lies between the sides PQ and a curve of the form y = xn (n > 1). If the area of the region taken away by the farmer F2 is exactly 30% of the area of $$\Delta $$PQR, then the value of n is .................
Your input ____
JEE Advanced Subjects