1
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1

Let $\mathbb{R}$ denote the set of all real numbers. For a real number $x$, let [ x ] denote the greatest integer less than or equal to $x$. Let $n$ denote a natural number.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List–I List–II
(P) The minimum value of $n$ for which the function $$ f(x)=\left[\frac{10 x^3-45 x^2+60 x+35}{n}\right] $$ is continuous on the interval $[1,2]$, is (1) 8
(Q) The minimum value of $n$ for which $g(x)=\left(2 n^2-13 n-15\right)\left(x^3+3 x\right)$, $x \in \mathbb{R}$, is an increasing function on $\mathbb{R}$, is (2) 9
(R) The smallest natural number $n$ which is greater than 5 , such that $x=3$ is a point of local minima of $$ h(x)=\left(x^2-9\right)^n\left(x^2+2 x+3\right) $$ is (3) 5
(S) Number of $x_0 \in \mathbb{R}$ such that

$$ l(x)=\sum\limits_{k=0}^4\left(\sin |x-k|+\cos \left|x-k+\frac{1}{2}\right|\right) $$

$x \in \mathbb{R}$, is NOT differentiable at $x_0$, is
(4) 6
(5) 10
A

(P) → (1)   (Q) → (3)   (R) → (2)   (S) → (5)

B

(P) → (2)   (Q) → (1)   (R) → (4)   (S) → (3)

C

(P) → (5)   (Q) → (1)   (R) → (4)   (S) → (3)

D

(P) → (2)   (Q) → (3)   (R) → (1)   (S) → (5)

2
JEE Advanced 2024 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $k \in \mathbb{R}$. If $\lim \limits_{x \rightarrow 0+}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=e^6$, then the value of $k$ is
A
1
B
2
C
3
D
4
3
JEE Advanced 2024 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$ f(x)=\left\{\begin{array}{cc} x^2 \sin \left(\frac{\pi}{x^2}\right), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 . \end{array}\right. $$

Then which of the following statements is TRUE?

A
$f(x)=0$ has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right)$.
B
$f(x)=0$ has no solutions in the interval $\left[\frac{1}{\pi}, \infty\right)$.
C
The set of solutions of $f(x)=0$ in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
D
$f(x)=0$ has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.
4
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$

Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then (1) $h$ is one-one.
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then (2) $h$ is onto.
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then (3) $h$ is differentiable on $\mathbb{R}$.
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then (4) the range of $h$ is $[0, 1]$.
(5) the range of $h$ is $\{0, 1\}$.

The correct option is
A
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(1)$ (S) $\rightarrow$ (2)
B
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(4)$ (S) $\rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(2)$ $(\mathrm{S}) \rightarrow(4)$
D
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(1)$ $(\mathrm{S}) \rightarrow(3)$
JEE Advanced Subjects