Algebra
Quadratic Equation and Inequalities
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseSequences and Series
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMathematical Induction and Binomial Theorem
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveMatrices and Determinants
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Permutations and Combinations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseProbability
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseVector Algebra
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of False3D Geometry
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveStatistics
MCQ (Single Correct Answer)Trigonometry
Trigonometric Functions & Equations
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseInverse Trigonometric Functions
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCoordinate Geometry
Straight Lines and Pair of Straight Lines
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseCircle
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseParabola
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveCalculus
Limits, Continuity and Differentiability
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Differentiation
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Derivatives
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseDefinite Integration
Fill in the BlanksNumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)SubjectiveTrue of FalseApplication of Integration
NumericalMCQ (Single Correct Answer)MCQ (Multiple Correct Answer)Subjective1
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f:\left[ {0,1} \right] \to R$$ (the set of all real numbers) be a function. Suppose the function $$f$$ is twice differentiable,
$$f(0) = f(1)=0$$ and satisfies $$f''\left( x \right) - 2f'\left( x \right) + f\left( x \right) \ge .{e^x},x \in \left[ {0,1} \right]$$.
$$f(0) = f(1)=0$$ and satisfies $$f''\left( x \right) - 2f'\left( x \right) + f\left( x \right) \ge .{e^x},x \in \left[ {0,1} \right]$$.
If the function $${e^{ - x}}f\left( x \right)$$ assumes its minimum in the interval $$\left[ {0,1} \right]$$ at $$x = {1 \over 4}$$, which of the following is true?
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Which of the following is true?
3
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Consider the statements:
$$P:$$ There exists some $$x \in R$$ such that $$f\left( x \right) + 2x = 2\left( {1 + {x^2}} \right)$$
$$Q:\,\,$$ There exists some $$x \in R$$ such that $$2\,f\left( x \right) + 1 = 2x\left( {1 + x} \right)$$
Then
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
The total number of local maxima and local minima of the function
$$f(x) = \left\{ {\matrix{
{{{(2 + x)}^3},} & { - 3 < x \le - 1} \cr
{{x^{2/3}},} & { - 1 < x < 2} \cr
} } \right.$$ is
Questions Asked from MCQ (Single Correct Answer)
JEE Advanced 2023 Paper 1 Online (1) JEE Advanced 2020 Paper 1 Offline (1) JEE Advanced 2017 Paper 1 Offline (3) JEE Advanced 2016 Paper 1 Offline (1) JEE Advanced 2013 Paper 2 Offline (2) IIT-JEE 2012 Paper 2 Offline (2) IIT-JEE 2008 Paper 1 Offline (1) IIT-JEE 2007 (4) IIT-JEE 2005 Screening (1) IIT-JEE 2004 Screening (2) IIT-JEE 2003 Screening (2) IIT-JEE 2002 Screening (2) IIT-JEE 2001 Screening (3) IIT-JEE 2000 Screening (5) IIT-JEE 1999 (1) IIT-JEE 1998 (2) IIT-JEE 1997 (1) IIT-JEE 1995 Screening (3) IIT-JEE 1994 (2) IIT-JEE 1987 (2) IIT-JEE 1986 (1) IIT-JEE 1983 (4)
JEE Advanced Subjects
Physics
Mechanics
Electricity
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry