1
JEE Advanced 2021 Paper 1 Online
Numerical
+2
-0
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equations

x + 2y + 3z = $$\alpha$$

4x + 5y + 6z = $$\beta$$

7x + 8y + 9z = $$\gamma $$ $$-$$ 1

is consistent. Let | M | represent the determinant of the matrix

$$M = \left[ {\matrix{ \alpha & 2 & \gamma \cr \beta & 1 & 0 \cr { - 1} & 0 & 1 \cr } } \right]$$

Let P be the plane containing all those ($$\alpha$$, $$\beta$$, $$\gamma$$) for which the above system of linear equations is consistent, and D be the square of the distance of the point (0, 1, 0) from the plane P.

The value of D is _________.
Your input ____
2
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2 $$ \times $$ 2 matrix such that the trace of A is 3 and the trace of A3 is $$-$$18, then the value of the determinant of A is .............
Your input ____
3
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Suppose

det$$\left| {\matrix{ {\sum\limits_{k = 0}^n k } & {\sum\limits_{k = 0}^n {{}^n{C_k}{k^2}} } \cr {\sum\limits_{k = 0}^n {{}^n{C_k}.k} } & {\sum\limits_{k = 0}^n {{}^n{C_k}{3^k}} } \cr } } \right| = 0$$

holds for some positive integer n. Then $$\sum\limits_{k = 0}^n {{{{}^n{C_k}} \over {k + 1}}} $$ equals ..............
Your input ____
4
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Let P be a matrix of order 3 $$ \times $$ 3 such that all the entries in P are from the set {$$-$$1, 0, 1}. Then, the maximum possible value of the determinant of P is ............ .
Your input ____
JEE Advanced Subjects