1
IIT-JEE 1987
Fill in the Blanks
+2
-0
If the vectors $$a\widehat i + \widehat j + \widehat k,\,\,\widehat i + b\widehat j + \widehat k$$ and $$\widehat i + \widehat j + c\widehat k$$
$$\left( {a \ne b \ne c \ne 1} \right)$$ are coplannar, then the value of $${1 \over {\left( {1 - a} \right)}} + {1 \over {\left( {1 - b} \right)}} + {1 \over {\left( {1 - c} \right)}} = ..........$$
2
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A = \left( {1,1,1} \right),\,\,\overrightarrow C = \left( {0,1, - 1} \right)$$ are given vectors, then a vector $$B$$ satifying the equations $$\overrightarrow A \times \overrightarrow B = \overrightarrow {\,C} $$ and $$\overrightarrow A .\overrightarrow B = \overrightarrow {3\,} $$ ..........
3
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C} $$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
4
IIT-JEE 1984
Fill in the Blanks
+2
-0
$$A, B, C$$ and $$D,$$ are four points in a plane with position vectors $$a, b, c$$ and $$d$$ respectively such that $$$\left( {\overrightarrow a - \overrightarrow d } \right)\left( {\overrightarrow b - \overrightarrow c } \right) = \left( {\overrightarrow b - \overrightarrow d } \right)\left( {\overrightarrow c - \overrightarrow a } \right) = 0$$$

The point $$D,$$ then, is the ................ of the triangle $$ABC.$$

JEE Advanced Subjects