The state S1 is :
Energy of the state S1 in units of the hydrogen atom ground state energy is:
The orbital angular momentum quantum number of the state S2 is
O, Cl, F, N, P, Sn, Tl, Na, Ti
The total number of diprotic acids among the following is:
H3PO4, H2SO4, H3PO3, H2CO3, H2S2O7, H3BO3, H3PO2, H2CrO4 and H2SO3

In the reaction,
The structure of the product T is :
One mole of an ideal gas is taken from $\mathbf{a}$ to $\mathbf{b}$ along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is $W_{\text {s }}$ and that dotted line path is $W_{\mathrm{d}}$, then the integer closest to the ratio $W_{\mathrm{d}} / W_{\mathrm{s}}$ is

Column I | Column II |
---|---|
(A) ![]() |
(P) Racemic mixture |
(B) ![]() |
(Q) Addition reaction |
(C) ![]() |
(R) Substitution reaction |
(D) ![]() |
(S) Coupling reaction |
All the compounds listed in Column I react with water. Match the result of the respective reactions with the appropriate options listed in Column II.
Column I | Column II |
---|---|
(A) (CH3)2SiCl2 | (P) Hydrogen halide formation |
(B) XeF4 | (Q) Redox reaction |
(C) Cl2 | (R) Reacts with glass |
(D) VCl5 | (S) Polymerisation |
(T) O2 formation |
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$
[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]
Column I
(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.
Column II
(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$
If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that
$$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.
[Note :[k] denotes the largest integer less than or equal to k ]
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.
The coordinates of $$A$$ and $$B$$ are
The orthocentre of the triangle $$PAB$$ is
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.
The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
Let $k$ be a positive real number and let
$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$
If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$
is equal to _________.
[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].
Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The area bounded by the curve $$y=f(x)$$ and the lines $$x=0,$$ $$y=0$$ and $$x=t,$$ lies in the interval
Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The real numbers lies in the interval
Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The function$$f'(x)$$ is
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by
If the radius of the opening of the dropper is $$r$$, the vertical force due to the surface tension on the drop of radius R (assuming $$r$$ << R) is
If r = 5 $$ \times $$ 10−4 m, $$\rho $$ = 103 kg m−3 , g = 10 m/s2 , T = 0.11 Nm−1 , the radius of the drop when it detaches from the dropper is approximately
After the drop detaches, its surface energy is

A block of mass 2 kg is free to move along the x-axis. It is at rest and from t = 0 onwards, it is subjected to a time-dependent force F(t) in the x-direction. The force F(t) varies with t as shown in the figure. The kinetic energy of the block after 4.5 s is
A biconvex lens of focal length 15 cm is in front of a plane mirror. The distance between the lens and the mirror is 10 cm. A small object is kept at a distance of 30 cm from the lens. The final image is
A large glass slab ($$\mu$$ = 5/3) of thickness 8 cm is placed over a point source of light on a plane surface. It is seen that light emerges out of the top surface of the slab from a circular area of radius R cm. What is the value of R?
Image of an object approaching a convex mirror of radius of curvature 20 m along its optical axis is observed to move from $${{25} \over 3}$$ m to $${{50} \over 7}$$ m in 30 s. What is the speed of the object in km per hour?
To determine the half-life of a radioactive element, a student plots a graph of $$\ln \left| {{{dN(t)} \over {dt}}} \right|$$ versus t. Here, $${{dN(t)} \over {dt}}$$ is the rate of radioactive decay at time t. If the number of radioactive nuclei of this element decreases by a factor of p after 4.16 years, the value of p is __________.
At time t = 0, a battery of 10 V is connected across points A and B in the given circuit. If the capacitors have no charge initially, at what time (in seconds) does the voltage across them becomes 4 V? (Take ln5 = 1.6, ln3 = 1.1)
A diatomic molecule has moment of inertia I. By Bohr's quantization condition, its rotational energy in the nth level (n = 0 is not allowed) is
It is found that the excitation frequency from ground to the first excited state of rotation for the CO molecule is close to $${4 \over \pi } \times {10^{11}}$$ Hz. Then, the moment of inertia of CO molecule about its centre of mass is close to (Take h = 2$$\pi$$ $$\times$$ 10$$-$$34 J-s)
In a CO molecule, the distance between C (mass = 12 amu) and O (mass = 16 amu), where 1 amu $$ = {5 \over 3} \times {10^{ - 27}}$$ kg, is close to :
Two transparent media of refractive indices $\mu_1$ and $\mu_3$ have a solid lens shaped transparent material of refractive index $\mu_2$ between them as shown in figures in Column II. A ray traversing these media is also shown in the figures. In Column I different relationships between $\mu_1, \mu_2$ and $\mu_3$ are given. Match them to the ray diagram shown in Column II :


You are given many resistances, capacitors and inductors. These are connected to a variable DC voltage source (the first two circuits) or an AC voltage source of 50 Hz frequency (the next three circuits) in different ways as shown in Column II. When a current I (steady state for DC or rms for AC) flows through the circuit, the corresponding voltage $V_1$ and $V_2$ (indicated in circuits) are related as shown in Column I. Match the two :


The key feature of Bohr's theory of spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton. We will extend this to a general rotational motion to find quantized rotational energy of a diatomic molecule assuming it to be rigid. The rule to be applied is Bohr's quantization condition.
It is found that the excitation frequency from ground to the first excited state of rotation for the CO molecule is close to $${4 \over \pi } \times {10^{11}}$$ Hz. Then, the moment of inertia of CO molecule about its centre of mass is close to (Take h = 2$$\pi$$ $$\times$$ 10$$-$$34 J-s)
The key feature of Bohr's theory of spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton. We will extend this to a general rotational motion to find quantized rotational energy of a diatomic molecule assuming it to be rigid. The rule to be applied is Bohr's quantization condition.
In a CO molecule, the distance between C (mass = 12 amu) and O (mass = 16 amu), where 1 amu $$ = {5 \over 3} \times {10^{ - 27}}$$ kg, is close to :
Two transparent media of refractive indices $\mu_1$ and $\mu_3$ have a solid lens shaped transparent material of refractive index $\mu_2$ between them as shown in figures in Column II. A ray traversing these media is also shown in the figures. In Column I different relationships between $\mu_1, \mu_2$ and $\mu_3$ are given. Match them to the ray diagram shown in Column II :


You are given many resistances, capacitors and inductors. These are connected to a variable DC voltage source (the first two circuits) or an AC voltage source of 50 Hz frequency (the next three circuits) in different ways as shown in Column II. When a current I (steady state for DC or rms for AC) flows through the circuit, the corresponding voltage $V_1$ and $V_2$ (indicated in circuits) are related as shown in Column I. Match the two :

