2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline2006
IIT-JEE 2006IIT-JEE 2006 Screening2005
IIT-JEE 2005 ScreeningIIT-JEE 20052004
IIT-JEE 2004IIT-JEE 2004 Screening2003
IIT-JEE 2003IIT-JEE 2003 Screening2002
IIT-JEE 2002IIT-JEE 2002 Screening2001
IIT-JEE 2001IIT-JEE 2001 Screening2000
IIT-JEE 2000 ScreeningIIT-JEE 20001999
IIT-JEE 1999 ScreeningIIT-JEE 19991998
IIT-JEE 1998IIT-JEE 1998 Screening1997
IIT-JEE 19971996
IIT-JEE 19961995
IIT-JEE 1995 ScreeningIIT-JEE 19951994
IIT-JEE 19941993
IIT-JEE 19931992
IIT-JEE 19921991
IIT-JEE 19911990
IIT-JEE 19901989
IIT-JEE 19891988
IIT-JEE 19881987
IIT-JEE 19871986
IIT-JEE 19861985
IIT-JEE 19851984
IIT-JEE 19841983
IIT-JEE 19831982
IIT-JEE 19821981
IIT-JEE 19811980
IIT-JEE 19801979
IIT-JEE 19791978
IIT-JEE 1978IIT-JEE 1978
Paper was held on Tue, Apr 11, 1978 9:00 AM
Chemistry
1
What is the molarity and molality of a 13% solution (by weight) of sulphuric acid with a density of 1.02 g/ml? To what volume should 100 ml of this acid be diluted in order to prepare a 1.5 N solution?
2
The substance absorbs CO2 and violently reacts with water. The substance is
3
Naturally occurring boron consists of two isotopes whose atomic weighs are 10.01 and 11.01. The atomic weight of natural oron is 10.81. Calculate the percentage of each isotope in natural boron.
4
Igniting MnO2 converts it quantitatively to Mn3O4. A sample of pyrolusite is of the following composition : MnO2 80%, SiO2 and other inert constituents 15%, rest being water. The sample is ignited in air to constant weight. What is the percentage of Mn in the ignited sample? [O = 16, Mn = 54.9]
5
One gram of an alloy of aluminium and magnetism when treated with excess of dil. HCl forms magnesium chloride, aluminium chloride and hydrogen. The evolved hydrogen, collected over mercury at $${0^o}C$$ has a volume of 1.20 litres at 0.92 atm. pressure. Calculate the composition of the alloy. [H = 1, Mg = 24, Al = 27]
6
What weight of AgCl will be precipitated when a solution containing 4.77 g of NaCl is added to a solution of 5.77g of AgNO3?
7
A compound was found to contain nitrogen and oxygen in the ratio 28 gm and 80 gm respectively. The formula of compound is
8
27 g of Al will react completely with how many grams if oxygen?
Mathematics
1
Find the derivative of $$\sin \left( {{x^2} + 1} \right)$$ with respect to $$x$$ first principle.
2
From a point $$O$$ inside a triangle $$ABC,$$ perpendiculars $$OD$$, $$OE, OF$$ are drawn to the sides $$BC, CA, AB$$ respectively. Prove that the perpendiculars from $$A, B, C$$ to the sides $$EF, FD, DE$$ are concurrent.
3
Balls are drawn one-by-one without replacement from a box containing $$2$$ black, $$4$$ white and $$3$$ red balls till all the balls are drawn. Find the probability that the balls drawn are in the order $$2$$ black, $$4$$ white and $$3$$ red.
4
Evaluate $$\int {{{\sin x} \over {\sin x - \cos x}}dx} $$
5
A triangle $$ABC$$ has sides $$AB=AC=5$$ cm and $$BC=6$$ cm Triangle $$A'B'C'$$ is the reflection of the triangle $$ABC$$ in a line parallel to $$AB$$ placed at a distance $$2$$ cm from $$AB$$, outside the triangle $$ABC$$. Triangle $$A''B''C''$$ is the reflection of the triangle $$A'B'C'$$ in a line parallel to $$BC$$ placed at a distance of $$2$$ cm from $$B'C'$$ outside the triangle $$A'B'C'$$. Find the distance between $$A$$ and $$A''$$.
6
If x = a + b, y = a$$\gamma $$ + b$$\beta $$ and z = a$$\beta $$ +b$$\gamma $$ where $$\gamma $$ and $$\beta $$ are the complex cube roots of unity, show that xyz = $${a^3} + {b^3}$$.
7
Find the equation of the circle whose radius is 5 and which touches the circle $${x^2}\, + \,{y^2}\, - \,2x\,\, - 4y\, - 20 = 0\,$$ at the point (5, 5).
8
One side of rectangle lies along the line $$4x + 7y + 5 = 0.$$ Two of its vertices are $$(-3, 1)$$ and $$(1, 1).$$ Find the equations of the other three sides.
9
A straight line segment of length $$\ell $$ moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio $$1 : 2$$
10
The area of a triangle is $$5$$. Two of its vertices are $$A\left( {2,1} \right)$$ and $$B\left( {3, - 2} \right)$$. The third vertex $$C$$ lies on $$y = x + 3$$. Find $$C$$.
11
Six X' s have to be placed in the squares of figure below in such a way that each row contains at least one X. In how many different ways can this be done.

12
Sketch the solution set of the following system of inequalities:
$$${x^2} + {y^2} - 2x \ge 0;\,\,3x - y - 12 \le 0;\,\,y - x \le 0;\,\,y \ge 0.$$$
13
Find all integers $$x$$ for which $$\left( {5x - 1} \right) < {\left( {x + 1} \right)^2} < \left( {7x - 3} \right).$$
14
Show that the square of $$\,{{\sqrt {26 - 15\sqrt 3 } } \over {5\sqrt 2 - \sqrt {38 + 5\sqrt 3 } }}$$ is a rational number.
15
Solve the following equation for $$x:\,\,2\,{\log _x}a + {\log _{ax}}a + 3\,\,{\log _{{a^2}x}}\,a = 0,a > 0$$
16
Solve for $$x:\,\sqrt {x + 1} - \sqrt {x - 1} = 1.$$
17
Solve for $$x:{4^x} - {3^{^{x - {1 \over 2}}}}\, = {3^{^{x + {1 \over 2}}}}\, - {2^{2x - 1}}$$
18
If $$\left( {m\,,\,n} \right) = {{\left( {1 - {x^m}} \right)\left( {1 - {x^{m - 1}}} \right).......\left( {1 - {x^{m - n + 1}}} \right)} \over {\left( {1 - x} \right)\left( {1 - {x^2}} \right).........\left( {1 - {x^n}} \right)}}$$
where $$m$$ and $$n$$ are positive integers $$\left( {n \le m} \right),$$ show that
$$\left( {m,n + 1} \right) = \left( {m - 1,\,n + 1} \right) + {x^{m - n - 1}}\left( {m - 1,n} \right).$$
19
If $$\tan \alpha = {m \over {m + 1}}\,$$ and $$\tan \beta = {2 \over {2m + 1}},$$ find the possible values of $$\left( {\alpha + \beta } \right).$$
20
Express $${1 \over {1 - \cos \,\theta + 2i\sin \theta }}$$ in the form x + iy.
Physics
1
A horizontal uniform rope of length L, resting on a frictionless horizontal surface, is pulled at one end by force F. What is the tension in the rope at a distance $$l$$ from the end where the force is applied?
2
A car accelerates from rest at a constant rate $$\alpha $$ for some time after which it decelerates at a constant rate $$\beta $$ to come to rest. If the total time lapse is t seconds, evaluate.
(i) maximum velocity reached, and
(ii) the total distance travelled.