2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online
2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online
2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online
2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online
2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online
2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline
2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline
2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline
2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline
2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline
2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline
2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline
2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline
2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline
2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline
2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline
2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline
2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline
2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline
2006
IIT-JEE 2006IIT-JEE 2006 Screening
2005
IIT-JEE 2005 ScreeningIIT-JEE 2005
2004
IIT-JEE 2004IIT-JEE 2004 Screening
2003
IIT-JEE 2003IIT-JEE 2003 Screening
2002
IIT-JEE 2002IIT-JEE 2002 Screening
2001
IIT-JEE 2001IIT-JEE 2001 Screening
2000
IIT-JEE 2000 ScreeningIIT-JEE 2000
1999
IIT-JEE 1999 ScreeningIIT-JEE 1999
1998
IIT-JEE 1998IIT-JEE 1998 Screening
1997
IIT-JEE 1997
1996
IIT-JEE 1996
1995
IIT-JEE 1995 ScreeningIIT-JEE 1995
1994
IIT-JEE 1994
1993
IIT-JEE 1993
1992
IIT-JEE 1992
1991
IIT-JEE 1991
1990
IIT-JEE 1990
1989
IIT-JEE 1989
1988
IIT-JEE 1988
1987
IIT-JEE 1987
1986
IIT-JEE 1986
1985
IIT-JEE 1985
1984
IIT-JEE 1984
1983
IIT-JEE 1983
1982
IIT-JEE 1982
1981
IIT-JEE 1981
1980
IIT-JEE 1980
1979
IIT-JEE 1979
1978
IIT-JEE 1978
IIT-JEE 1995 Screening
Paper was held on Tue, Apr 11, 1995 9:00 AM
Practice Questions
Mathematics
1
If $$f\left( x \right)\,\,\, = \,\,\,A\sin \left( {{{\pi x} \over 2}} \right)\,\,\, + \,\,\,B,\,\,\,f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and
$$\int\limits_0^1 {f\left( x \right)dx = {{2A} \over \pi },} $$ then constants $$A$$ and $$B$$ are
2
If $$\overrightarrow a ,$$ $$\overrightarrow b $$ and $$\overrightarrow c $$ are three non coplanar vectors, then
$$\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow c } \right)} \right]$$ equals
3
Let $$\overrightarrow u ,\overrightarrow v $$ and $$\overrightarrow w $$ be vectors such that $$\overrightarrow u + \overrightarrow v + \overrightarrow w = 0.$$ If $$\left| {\overrightarrow u } \right| = 3,\left| {\overrightarrow v } \right| = 4$$ and $$\left| {\overrightarrow w } \right| = 5,$$ then $$\overrightarrow u .\overrightarrow v + \overrightarrow v .\overrightarrow w + \overrightarrow w .\overrightarrow u $$ is
4
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\left( {\overrightarrow b + \overrightarrow c } \right)} \over {\sqrt 2 }},\,\,$$ then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
5
Let $$\overrightarrow a = \widehat i - \widehat j,\overrightarrow b = \widehat j - \widehat k,\overrightarrow c = \widehat k - \widehat i.$$ If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow a .\overrightarrow d = 0 = \left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right],$$ then $$\overrightarrow d $$ equals
6
Let $$0 < P\left( A \right) < 1,0 < P\left( B \right) < 1$$ and
$$P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( A \right)P\left( B \right)$$ then
7
The probability of India winning a test match against West Indies is $$1/2$$. Assuming independence from match to match the probability that in a $$5$$ match series India's second win occurs at third test is
8
Three of six vertices of a regular hexagon are chosen at random. The probability that the triangle with three vertices is equilateral, equals
9
$$\,3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right) = $$
10
The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx} $$ where [ . ] represents the greatest integer function is
11
The value of the integral $$\int {{{{{\cos }^3}x + {{\cos }^5}x} \over {{{\sin }^2}x + {{\sin }^4}x}}} \,dx\,$$ is
12
The slope of the tangent to a curve $$y = f\left( x \right)$$ at $$\left[ {x,\,f\left( x \right)} \right]$$ is $$2x+1$$. If the curve passes through the point $$\left( {1,2} \right)$$, then the area bounded by the curve, the $$x$$-axis and the line $$x=1$$ is
13
On the interval $$\left[ {0,1} \right]$$ the function $${x^{25}}{\left( {1 - x} \right)^{75}}$$ takes its maximum value at the point
14
The function $$f\left( x \right) = {{in\,\left( {\pi + x} \right)} \over {in\,\left( {e + x} \right)}}$$ is
15
In a triangle $$ABC$$, $$\angle B = {\pi \over 3}$$ and $$\angle C = {\pi \over 4}$$. Let $$D$$ divide $$BC$$ internally in the ratio $$1:3$$ then $${{\sin \angle BAD} \over {\sin \angle CAD}}$$ is equal to
16
The radius of the circle passing through the foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$, and having its centre at $$(0, 3)$$ is
17
Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$ such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is
18
Let $$z$$ and $$\omega $$ be two non zero complex numbers such that
$$\left| z \right| = \left| \omega \right|$$ and $${\rm A}rg\,z + {\rm A}rg\,\omega = \pi ,$$ then $$z$$ equals
19
If $$\omega \,\left( { \ne 1} \right)$$ is a cube root of unity and $${\left( {1 + \omega } \right)^7} = A + B\,\omega $$ then $$A$$ and $$B$$ are respectively
20
Let $$z$$ and $$\omega $$ be two complex numbers such that
$$\left| z \right| \le 1,$$ $$\left| \omega \right| \le 1$$ and $$\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
21
The general values of $$\theta $$ satisfying the equation $$2{\sin ^2}\theta - 3\sin \theta - 2 = 0$$ is