2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline2006
IIT-JEE 2006IIT-JEE 2006 Screening2005
IIT-JEE 2005 ScreeningIIT-JEE 20052004
IIT-JEE 2004IIT-JEE 2004 Screening2003
IIT-JEE 2003IIT-JEE 2003 Screening2002
IIT-JEE 2002IIT-JEE 2002 Screening2001
IIT-JEE 2001IIT-JEE 2001 Screening2000
IIT-JEE 2000 ScreeningIIT-JEE 20001999
IIT-JEE 1999 ScreeningIIT-JEE 19991998
IIT-JEE 1998IIT-JEE 1998 Screening1997
IIT-JEE 19971996
IIT-JEE 19961995
IIT-JEE 1995 ScreeningIIT-JEE 19951994
IIT-JEE 19941993
IIT-JEE 19931992
IIT-JEE 19921991
IIT-JEE 19911990
IIT-JEE 19901989
IIT-JEE 19891988
IIT-JEE 19881987
IIT-JEE 19871986
IIT-JEE 19861985
IIT-JEE 19851984
IIT-JEE 19841983
IIT-JEE 19831982
IIT-JEE 19821981
IIT-JEE 19811980
IIT-JEE 19801979
IIT-JEE 19791978
IIT-JEE 1978IIT-JEE 1998 Screening
Paper was held on Sat, Apr 11, 1998 9:00 AM
Physics
1
A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the center. At a certain instant of time, the stone is at its lowest position, and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is
2
A force $$F = - K\left( {y\widehat i + x\widehat j} \right)$$ (where K is a positive constant) acts on a particle moving in the xy plane. Starting from the origin, the particle is taken along the positive x axis to the point $$\left( {a,0} \right)$$, and then parallel to the y axis to the point $$\left( {a,a} \right)$$. The total work done by the force F on the particle is