2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online
2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online
2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online
2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online
2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online
2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline
2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline
2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline
2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline
2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline
2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline
2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline
2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline
2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline
2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline
2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline
2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline
2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline
2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline
2006
IIT-JEE 2006IIT-JEE 2006 Screening
2005
IIT-JEE 2005 ScreeningIIT-JEE 2005
2004
IIT-JEE 2004IIT-JEE 2004 Screening
2003
IIT-JEE 2003IIT-JEE 2003 Screening
2002
IIT-JEE 2002IIT-JEE 2002 Screening
2001
IIT-JEE 2001IIT-JEE 2001 Screening
2000
IIT-JEE 2000 ScreeningIIT-JEE 2000
1999
IIT-JEE 1999 ScreeningIIT-JEE 1999
1998
IIT-JEE 1998IIT-JEE 1998 Screening
1997
IIT-JEE 1997
1996
IIT-JEE 1996
1995
IIT-JEE 1995 ScreeningIIT-JEE 1995
1994
IIT-JEE 1994
1993
IIT-JEE 1993
1992
IIT-JEE 1992
1991
IIT-JEE 1991
1990
IIT-JEE 1990
1989
IIT-JEE 1989
1988
IIT-JEE 1988
1987
IIT-JEE 1987
1986
IIT-JEE 1986
1985
IIT-JEE 1985
1984
IIT-JEE 1984
1983
IIT-JEE 1983
1982
IIT-JEE 1982
1981
IIT-JEE 1981
1980
IIT-JEE 1980
1979
IIT-JEE 1979
1978
IIT-JEE 1978
IIT-JEE 1995
Paper was held on Tue, Apr 11, 1995 9:00 AM
Practice Questions
Mathematics
1
Let $$(h, k)$$ be a fixed point, where $$h > 0,k > 0.$$. A straight line passing through this point cuts the possitive direction of the coordinate axes at the points $$P$$ and $$Q$$. Find the minimum area of the triangle $$OPQ$$, $$O$$ being the origin.
2
Let $$y=f(x)$$ be a curve passing through $$(1,1)$$ such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area $$2.$$ From the differential equation and determine all such possible curves.
3
Evaluate the definite integral : $$$\int\limits_{ - 1/\sqrt 3 }^{1/\sqrt 3 } {\left( {{{{x^4}} \over {1 - {x^4}}}} \right){{\cos }^{ - 1}}\left( {{{2x} \over {1 + {x^2}}}} \right)} dx$$$
4
Consider a square with vertices at $$(1,1), (-1,1), (-1,-1)$$ and $$(1, -1)$$. Let $$S$$ be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region $$S$$ and find its area.
5
Let $${I_m} = \int\limits_0^\pi {{{1 - \cos mx} \over {1 - \cos x}}} dx.$$ Use mathematical induction to prove that $${I_m} = m\,\pi ,m = 0,1,2,........$$
6
The minimum value of the expression $$\sin \,\alpha + \sin \,\beta \, + \sin \,\gamma ,\,$$ where $$\alpha ,\,\beta ,\,\gamma $$ are real numbers satisfying $$\alpha + \beta + \gamma = \pi $$ is
7
Let '$$d$$' be the perpendicular distance from the centre of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ are the two foci of the ellipse, then show that $${\left( {P{F_1} - P{F_2}} \right)^2} = 4{a^2}\left( {1 - {{{b^2}} \over {{d^2}}}} \right)$$.
8
Show that the locus of a point that divides a chord of slope $$2$$ of the parabola $${y^2} = 4x$$ internally in the ratio $$1:2$$ is a parabola. Find the vertex of this parabola.
9
The orthocentre of the triangle formed by the lines $$xy=0$$ and $$x+y=1$$ is
10
Let $$a,\,b,\,c$$ be real. If $$a{x^2} + bx + c = 0$$ has two real roots $$\alpha $$ and $$\beta ,$$ where $$\alpha < - 1$$ and $$\beta > 1,$$ then show that $$1 + {c \over a} + \left| {{b \over a}} \right| < 0.$$
11
Find the smallest positive number $$p$$ for which the equation $$\cos \left( {p\,\sin x} \right) = \sin \left( {p\cos x} \right)$$ has a solution $$x\, \in \,\left[ {0,2\pi } \right]$$.
12
If $$\left| {Z - W} \right| \le 1,\left| W \right| \le 1$$, show that $${\left| {Z - W} \right|^2} \le {(\left| Z \right| - \left| W \right|)^2} + {(ArgZ - Arg\,W)^2}$$
13
If $$i{z^3} + {z^2} - z + i = 0$$ , then show that $$\left| z \right| = 1$$.