2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online
2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online
2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online
2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online
2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online
2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline
2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline
2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline
2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline
2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline
2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline
2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline
2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline
2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline
2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline
2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline
2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline
2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline
2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline
2006
IIT-JEE 2006IIT-JEE 2006 Screening
2005
IIT-JEE 2005 ScreeningIIT-JEE 2005
2004
IIT-JEE 2004IIT-JEE 2004 Screening
2003
IIT-JEE 2003IIT-JEE 2003 Screening
2002
IIT-JEE 2002IIT-JEE 2002 Screening
2001
IIT-JEE 2001IIT-JEE 2001 Screening
2000
IIT-JEE 2000 ScreeningIIT-JEE 2000
1999
IIT-JEE 1999 ScreeningIIT-JEE 1999
1998
IIT-JEE 1998IIT-JEE 1998 Screening
1997
IIT-JEE 1997
1996
IIT-JEE 1996
1995
IIT-JEE 1995 ScreeningIIT-JEE 1995
1994
IIT-JEE 1994
1993
IIT-JEE 1993
1992
IIT-JEE 1992
1991
IIT-JEE 1991
1990
IIT-JEE 1990
1989
IIT-JEE 1989
1988
IIT-JEE 1988
1987
IIT-JEE 1987
1986
IIT-JEE 1986
1985
IIT-JEE 1985
1984
IIT-JEE 1984
1983
IIT-JEE 1983
1982
IIT-JEE 1982
1981
IIT-JEE 1981
1980
IIT-JEE 1980
1979
IIT-JEE 1979
1978
IIT-JEE 1978
IIT-JEE 1989
Paper was held on Tue, Apr 11, 1989 9:00 AM
Practice Questions
Chemistry
1
Which one of the following is the strongest base?
2
An equal volume of a reducing agent is titrated separately with 1M KMnO4 in acid neutral and alkaline media. The volumes of KMnO4 required are 20 ml. in acid 33.4 ml. neutral and 100 ml in alkaline media. Find out the oxidation state of manganese in each reduction product. Give the balanced equations for all three half reactions. Find out the volume of 1M K2Cr2O7 consumed; if the same volume of the reducing agent is titrated in acid medium.
3
The correct set of quantum numbers for the unpaired electron of chlorine atom is
4
The correct ground state electronic configuration of chromium atom is
5
Which one of the following is the smallest in size?
6
Sodium sulphate is soluble in water whereas barium sulphate is sparingly soluble because
7
The molecule which has zero dipole moment is:
8
The molecule which has pyramidal shape is
9
The compound in which $$\mathop C\limits^* $$ uses its sp3 hybrid orbitals for bond formation is
10
Which of the following is paramagnetic?
11
Eight gram each of oxygen and hydrogen at 27oC will have the total kinetic energy in the ratio of _______.
12
The electrolysis of molten sodium hydride liberates ____ gas at the _____
13
Write down the balanced equation for the reaction when:
Potassium ferricyanide reacts with hydrogen peroxide in basic solution
14
n-Butane is produced by the monobromination of ethane followed by the Wurtz reaction. Calculate the volume of ethane at NTP required to produce 55 g n-Butane, if the bromination takes place with 90 percent yield and the Wurtz reaction with 85 percent yield.
15
The vapour pressure of a dilute aqueous solution of glucose (C6H12O6) is 750 mm of mercury at 373 K. Calculate (i) molality, and (ii) mole fraction of the solution.
Mathematics
1
If the probability for $$A$$ to fail in an examination is $$0.2$$ and that for $$B$$ is $$0.3$$, then the probability that either $$A$$ or $$B$$ fails is $$0.5$$
2
If $$E$$ and $$F$$ are independent events such that $$0 < P\left( E \right) < 1$$ and $$0 < P\left( F \right) < 1,$$ then
3
Suppose the probability for A to win a game against B is $$0.4.$$ If $$A$$ has an option of playing either a "best of $$3$$ games" or a "best of $$5$$ games" match against $$B$$, which option should be choose so that the probability of his winning the match is higher ? (No game ends in a draw).
4
For any three vectors $${\overrightarrow a ,\,\overrightarrow b ,}$$ and $${\overrightarrow c ,}$$
$$\left( {\overrightarrow a - \overrightarrow b } \right)\,.\,\left( {\overrightarrow b - \overrightarrow c } \right)\, \times \,\left( {\overrightarrow c - \overrightarrow a } \right)\, = \,2\overrightarrow {a\,} .\,\overrightarrow {b\,} \times \,\overrightarrow c .$$
5
If vectors $$\overrightarrow A ,\overrightarrow B ,\overrightarrow C $$ are coplanar, show that $$$\left| {\matrix{ {} & {\overrightarrow {a.} } & {} & {\overrightarrow {b.} } & {} & {\overrightarrow {c.} } \cr {\overrightarrow {a.} } & {\overrightarrow {a.} } & {\overrightarrow {a.} } & {\overrightarrow {b.} } & {\overrightarrow {a.} } & {\overrightarrow {c.} } \cr {\overrightarrow {b.} } & {\overrightarrow {a.} } & {\overrightarrow {b.} } & {\overrightarrow {b.} } & {\overrightarrow {b.} } & {\overrightarrow {c.} } \cr } } \right| = \overrightarrow 0 $$$
6
In a triangle $$OAB,E$$ is the midpoint of $$BO$$ and $$D$$ is a point on $$AB$$ such that $$AD:DB=2:1.$$ If $$OD$$ and $$AE$$ intersect at $$P,$$ determine the ratio $$OP:PD$$ using vector methods.
7
A pair of fair dice is rolled together till a sum of either $$5$$ or $$7$$ is obtained. Then the probability that $$5$$ comes before $$7$$ is ...............
8
The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle $${x^2} + {y^2} = 4\,\,at\,\,\left( {1,\sqrt 3 } \right)$$ is,..................
9
If $$a,\,b,\,c,$$ are the numbers between 0 and 1 such that the ponts $${z_1} = a + i,{z_2} = 1 + bi$$ and $${z_3} = 0$$ form an equilateral triangle,
then a= .......and b=..........
10
The equation $${x^{3/4{{\left( {{{\log }_2}\,\,x} \right)}^2} + {{\log }_2}\,\,x - 5/4}} = \sqrt 2 $$ has
11
If x and y are positive real numbers and m, n are any positive integers, then $${{{x^n}\,{y^m}} \over {(1 + {x^{2n}})\,(1 + {y^{2m}})}} > {1 \over 4}$$
12
If $$\alpha $$ and $$\beta $$ are the roots of $${x^2}$$+ px + q = 0 and $${\alpha ^4},{\beta ^4}$$ are the roots of $$\,{x^2} - rx + s = 0$$, then the equation $${x^2} - 4qx + 2{q^2} - r = 0$$ has always
13
Let a, b, c be real numbers, $$a \ne 0$$. If $$\alpha \,$$ is a root of $${a^2}{x^2} + bx + c = 0$$. $$\beta \,$$ is the root of $${a^2}{x^2} - bx - c = 0$$ and $$0 < \alpha \, < \,\beta $$, then the equation $${a^2}{x^2} + 2bx + 2c = 0$$ has a root $$\gamma $$ that always satisfies
14
A five-digit numbers divisible by 3 is to be formed using the numerals 0, 1, 2, 3, 4 and 5, without repetition. The total number of ways this can be done is
15
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$
16
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$
17
Let $$ABC$$ be a triangle with $$AB = AC$$. If $$D$$ is the midpoint of $$BC, E$$ is the foot of the perpendicular drawn from $$D$$ to $$AC$$ and $$F$$ the mid-point of $$DE$$, prove that $$AF$$ is perpendicular to $$BE$$.
18
The line x + 3y = 0 is a diameter of the circle $${x^2} + {y^2} - 6x + 2y = 0\,$$.
19
The general solutions of $$\,\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$ is
20
If the two circles $${(x - 1)^2} + {(y - 3)^2} = {r^2}$$ and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$ intersect in two distinct points, then
21
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then the equation of this circle is
22
If $$\left( {{m_i},{1 \over {{m_i}}}} \right),\,{m_i}\, > \,0,\,i\, = 1,\,2,\,3,\,4$$ are four distinct points on a circle, then show that $${m_1}\,{m_2}\,{m_3}\,{m_4}\, = 1$$
23
If $$x = \sec \theta - \cos \theta $$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta $$, then show
that $$\left( {{x^2} + 4} \right){\left( {{{dy} \over {dx}}} \right)^2} = {n^2}\left( {{y^2} + 4} \right)$$
24
$$ABC$$ is a triangular park with $$AB=AC=100$$ $$m$$. A television tower stands at the midpoint of $$BC$$. The angles of elevetion of the top of the tower at $$A, B, C$$ are 45$$^ \circ $$, 60$$^ \circ $$, 60$$^ \circ $$, respectively. Find the height of the tower.
25
The greater of the two angles $$A = 2{\tan ^{ - 1}}\left( {2\sqrt 2 - 1} \right)$$ and $$B = 3{\sin ^{ - 1}}\left( {1/3} \right) + {\sin ^{ - 1}}\left( {3/5} \right)$$ is ________ .
26
Find all maxima and minima of the function $$$y = x{\left( {x - 1} \right)^2},0 \le x \le 2$$$
Also determine the area bounded by the curve $$y = x{\left( {x - 1} \right)^2}$$,
the $$y$$-axis and the line $$y-2$$.
27
Evaluate $$\int {\left( {\sqrt {\tan x} + \sqrt {\cot x} } \right)dx} $$
28
The value of $$\int\limits_{ - 2}^2 {\left| {1 - {x^2}} \right|dx} $$ is ...............
29
If $$f$$ and $$g$$ are continuous function on $$\left[ {0,a} \right]$$ satisfying
$$f\left( x \right) = f\left( {a - x} \right)$$ and $$g\left( x \right) + g\left( {a - x} \right) = 2,$$
then show that $$\int\limits_0^a {f\left( x \right)g\left( x \right)dx = \int\limits_0^a {f\left( x \right)dx} } $$