2025
JEE Advanced 2025 Paper 2 OnlineJEE Advanced 2025 Paper 1 Online2024
JEE Advanced 2024 Paper 2 OnlineJEE Advanced 2024 Paper 1 Online2023
JEE Advanced 2023 Paper 2 OnlineJEE Advanced 2023 Paper 1 Online2022
JEE Advanced 2022 Paper 2 OnlineJEE Advanced 2022 Paper 1 Online2021
JEE Advanced 2021 Paper 2 OnlineJEE Advanced 2021 Paper 1 Online2020
JEE Advanced 2020 Paper 2 OfflineJEE Advanced 2020 Paper 1 Offline2019
JEE Advanced 2019 Paper 2 OfflineJEE Advanced 2019 Paper 1 Offline2018
JEE Advanced 2018 Paper 2 OfflineJEE Advanced 2018 Paper 1 Offline2017
JEE Advanced 2017 Paper 2 OfflineJEE Advanced 2017 Paper 1 Offline2016
JEE Advanced 2016 Paper 2 OfflineJEE Advanced 2016 Paper 1 Offline2015
JEE Advanced 2015 Paper 2 OfflineJEE Advanced 2015 Paper 1 Offline2014
JEE Advanced 2014 Paper 2 OfflineJEE Advanced 2014 Paper 1 Offline2013
JEE Advanced 2013 Paper 2 OfflineJEE Advanced 2013 Paper 1 Offline2012
IIT-JEE 2012 Paper 2 OfflineIIT-JEE 2012 Paper 1 Offline2011
IIT-JEE 2011 Paper 1 OfflineIIT-JEE 2011 Paper 2 Offline2010
IIT-JEE 2010 Paper 2 OfflineIIT-JEE 2010 Paper 1 Offline2009
IIT-JEE 2009 Paper 2 OfflineIIT-JEE 2009 Paper 1 Offline2008
IIT-JEE 2008 Paper 2 OfflineIIT-JEE 2008 Paper 1 Offline2007
IIT-JEE 2007IIT-JEE 2007 Paper 2 Offline2006
IIT-JEE 2006IIT-JEE 2006 Screening2005
IIT-JEE 2005 ScreeningIIT-JEE 20052004
IIT-JEE 2004IIT-JEE 2004 Screening2003
IIT-JEE 2003IIT-JEE 2003 Screening2002
IIT-JEE 2002IIT-JEE 2002 Screening2001
IIT-JEE 2001IIT-JEE 2001 Screening2000
IIT-JEE 2000 ScreeningIIT-JEE 20001999
IIT-JEE 1999 ScreeningIIT-JEE 19991998
IIT-JEE 1998IIT-JEE 1998 Screening1997
IIT-JEE 19971996
IIT-JEE 19961995
IIT-JEE 1995 ScreeningIIT-JEE 19951994
IIT-JEE 19941993
IIT-JEE 19931992
IIT-JEE 19921991
IIT-JEE 19911990
IIT-JEE 19901989
IIT-JEE 19891988
IIT-JEE 19881987
IIT-JEE 19871986
IIT-JEE 19861985
IIT-JEE 19851984
IIT-JEE 19841983
IIT-JEE 19831982
IIT-JEE 19821981
IIT-JEE 19811980
IIT-JEE 19801979
IIT-JEE 19791978
IIT-JEE 1978IIT-JEE 2000
Paper was held on Tue, Apr 11, 2000 9:00 AM
Chemistry
1
A hydrogenation reaction is carried out at 500 K. If the same reaction is carried out in the presence of a catalyst at the same rate, the temperature required is 400 K. Calculate the activation energy of the reaction if the catalyst lowers the activation barrier by 20 kJ mol-1.
2
The following electrochemical cell has been set up.
Pt(1) | Fe3+, Fe2+ (a = 1) | Ce4+, Ce3+ (a=1) | Pt(2)
Eo (Fe3+, Fe2+) = 0.77 V; Eo (Ce4+, Ce3+) = 1.61 V
If an ammeter is connected between the two platinum electrodes, predict the direction of flow of current. Will the current increase or decrease with time?
Pt(1) | Fe3+, Fe2+ (a = 1) | Ce4+, Ce3+ (a=1) | Pt(2)
Eo (Fe3+, Fe2+) = 0.77 V; Eo (Ce4+, Ce3+) = 1.61 V
If an ammeter is connected between the two platinum electrodes, predict the direction of flow of current. Will the current increase or decrease with time?
3
Copper sulphate solution (250 mL) was electrolysed using platinum anode and a copper cathode. A constant current of 2mA was passed for 16 minutes. It was found that after electrolysis the absorbance of the solution was reduced to 50% of its original value. Calculate the concentration of copper sulphate in the solution to begin with.
4
To 500 cm3 of water, 3.0 $$\times$$ 10-3 kg of acetic acid is added. If 23% of acetic acid is dissociated, what will be the depression in freezing point? Kf and density of water are 1.86 K kg-1 mol-1 and 0.997 g cm-3, respectively
5
Write down the M.O. electron distribution of O2. Specify its bond order and magnetic property.
6
Calculate the energy required to excite one litre of hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of H-H bond 436 kJ mol-1.
Mathematics
1
If $$\alpha ,\,\beta $$ are the roots of $$a{x^2} + bx + c = 0$$, $$\,\left( {a \ne 0} \right)$$ and $$\alpha + \delta ,\,\,\beta + \delta $$ are the roots of $$A{x^2} + Bx + c = 0,$$ $$\left( {A \ne 0\,} \right)\,$$ for some contant $$\delta $$, then prove that $${{{b^2} - 4ac} \over {{a^2}}} = {{{B^2} - 4Ac} \over {{A^2}}}$$.
2
A coin has probability $$p$$ of showing head when tossed. It is tossed $$n$$ times. Let $${p_n}$$ denote the probability that no two (or more) consecutive heads occur. Prove that $${p_1} = 1,{p_2} = 1 - {p^2}$$ and $${p_n} = \left( {1 - p} \right).\,\,{p_{n - 1}} + p\left( {1 - p} \right){p_{n - 2}}$$ for all $$n \ge 3.$$
3
For $$x>0,$$ let $$f\left( x \right) = \int\limits_e^x {{{\ln t} \over {1 + t}}dt.} $$ Find the function
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
4
Suppose $$p\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + .......... + {a_n}{x^n}.$$ If
$$\left| {p\left( x \right)} \right| \le \left| {{e^{x - 1}} - 1} \right|$$ for all $$x \ge 0$$, prove that
$$\left| {{a_1} + 2{a_2} + ........ + n{a_n}} \right| \le 1$$.
$$\left| {p\left( x \right)} \right| \le \left| {{e^{x - 1}} - 1} \right|$$ for all $$x \ge 0$$, prove that
$$\left| {{a_1} + 2{a_2} + ........ + n{a_n}} \right| \le 1$$.
5
Let $$ABC$$ be a triangle with incentre $$I$$ and inradius $$r$$. Let $$D,E,F$$ be the feet of the perpendiculars from $$I$$ to the sides $$BC$$, $$CA$$ and $$AB$$ respectively. If $${r_1},{r_2}$$ and $${r_3}$$ are the radii of circles inscribed in the quadrilaterals $$AFIE$$, $$BDIF$$ and $$CEID$$ respectively, prove that
$$${{{r_1}} \over {r - {r_1}}} + {{{r_2}} \over {r - {r_2}}} + {{{r_3}} \over {r - {r_3}}} = {{{r_1}{r_2}{r_3}} \over {\left( {e - {r_1}} \right)\left( {r - {r_2}} \right)\left( {r - {r_3}} \right)}}$$$
6
If $${x^2} + {y^2} = 1$$ then
7
Let $${C_1}$$ and $${C_2}$$ be respectively, the parabolas $${x^2} = y - 1$$ and $${y^2} = x - 1$$. Let $$P$$ be any point on $${C_1}$$ and $$Q$$ be any point on $${C_2}$$. Let $${P_1}$$ and $${Q_1}$$ be the reflections of $$P$$ and $$Q$$, respectively, with respect to the line $$y=x$$. Prove that $${P_1}$$ lies on $${C_2}$$, $${Q_1}$$ lies on $${C_1}$$ and $$PQ \ge $$ min $$\left\{ {P{P_1},Q{Q_1}} \right\}$$. Hence or otherwise determine points $${P_0}$$ and $${Q_0}$$ on the parabolas $${C_1}$$ and $${C_2}$$ respectively such that $${P_0}{Q_0} \le PQ$$ for all pairs of points $$(P,Q)$$ with $$P$$ on $${C_1}$$ and $$Q$$ on $${C_2}$$.
8
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
9
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
10
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
11
The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
12
A coin probability $$p$$ of showing head when tossed. It is tossed $$n$$ times. Let $${p_n}$$ denote the probability that no two (or more) consecutive heads occur. Prove that $${p_1} = 1,\,\,{p_2} = 1 - {p^2}$$ and $${p_n} = \left( {1 - p} \right).\,\,{p_{n - 1}} + p\left( {1 - p} \right){p_{n - 2}}$$ for all $$n \ge 3.$$
Prove by induction on, that $${p_n} = A{\alpha ^n} + B{\beta ^n}$$ for all $$n \ge 1,$$ where $$\alpha $$ and $$\beta $$ are the roots of quadratic equation $${x^2} - \left( {1 - p} \right)x - p\left( {1 - p} \right) = 0$$ and $$A = {{{p^2} + \beta - 1} \over {\alpha \beta - {\alpha ^2}}},B = {{{p^2} + \alpha - 1} \over {\alpha \beta - {\beta ^2}}}.$$
13
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
14
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
15
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{
n \cr
m \cr
} } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$
Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.
16
In any triangle $$ABC,$$ prove that
$$$\cot {A \over 2} + \cot {B \over 2} + \cot {C \over 2} = \cot {A \over 2}\cot {B \over 2}\cot {C \over 2}.$$$