Trigonometry
Trigonometric Ratio and Identites
NumericalMCQ (Single Correct Answer)
1
JEE Main 2025 (Online) 2nd April Morning Shift
Numerical
+4
-1

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a thrice differentiable odd function satisfying $f^{\prime}(x) \geq 0, f^{\prime}(x)=f(x), f(0)=0, f^{\prime}(0)=3$. Then $9 f\left(\log _e 3\right)$ is equal to __________ .

Your input ____
2
JEE Main 2024 (Online) 4th April Evening Shift
Numerical
+4
-1

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a thrice differentiable function such that $$f(0)=0, f(1)=1, f(2)=-1, f(3)=2$$ and $$f(4)=-2$$. Then, the minimum number of zeros of $$\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$$ is __________.

Your input ____
3
JEE Main 2024 (Online) 1st February Evening Shift
Numerical
+4
-1
If $y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :
Your input ____
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Let $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}$. Then $f^{\prime}(10)$ is equal to ____________.
Your input ____
JEE Main Subjects