Limits, Continuity and Differentiability
Practice Questions
MCQ (Single Correct Answer)
1

Given below are two statements:

Statement I: $ \lim\limits_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5} $

Statement II: $ \lim\limits_{x \to 1} \left( x^{\frac{2}{1-x}} \right) = \frac{1}{e^2} $

In the light of the above statements, choose the correct answer from the options given below:

JEE Main 2025 (Online) 8th April Evening Shift
2

$\lim _\limits{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \log _e\left(1+3 x^2\right)}{\left(\tan ^{-1} 3 \sqrt{x}\right)^2\left(e^{5(x)^{\frac{4}{3}}}-1\right)}$ is equal to

JEE Main 2025 (Online) 7th April Morning Shift
3

Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim \limits_{x \rightarrow 0}(f(2+x))^{3 / x}=\mathrm{e}^\alpha$. Then the number of times the curve $y=4 x^3-4 x^2-4(\alpha-7) x-\alpha$ meets $x$-axis is :

JEE Main 2025 (Online) 4th April Evening Shift
4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=1$ and $f(2 x)-f(x)=x$ for all $x \in \mathbb{R}$. If $\lim _\limits{n \rightarrow \infty}\left\{f(x)-f\left(\frac{x}{2^n}\right)\right\}=G(x)$, then $\sum_\limits{r=1}^{10} G\left(r^2\right)$ is equal to

JEE Main 2025 (Online) 4th April Morning Shift
5

If $\lim _\limits{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda+\mu$ is equal to

JEE Main 2025 (Online) 4th April Morning Shift
6

Let $\quad f(x)= \begin{cases}(1+a x)^{1 / x} & , x<0 \\ 1+b, & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2}, & x>0\end{cases}$ be continuous at $x=0$. Then $e^a b c$ is equal to:

JEE Main 2025 (Online) 3rd April Morning Shift
7
$$If\,\mathop {\lim }\limits_{x \to 0} {{\cos (2x) + a\cos (4x) - b} \over {{x^4}}}is\,finite,\,then\,(a + b)\,is\,equal\,to:$$
JEE Main 2025 (Online) 2nd April Evening Shift
8

For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :

JEE Main 2025 (Online) 2nd April Morning Shift
9
Let the function $f(x)=\left(x^2-1\right)\left|x^2-a x+2\right|+\cos |x|$ be not differentiable at the two points $x=\alpha=2$ and $x=\beta$. Then the distance of the point $(\alpha, \beta)$ from the line $12 x+5 y+10=0$ is equal to :
JEE Main 2025 (Online) 29th January Evening Shift
10

The value of $\lim \limits_{n \rightarrow \infty}\left(\sum\limits_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!}\right)$ is :

JEE Main 2025 (Online) 29th January Morning Shift
11

Let $[x]$ denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function $f(x)=[x]+|x-2|,-2< x<3$, is not continuous and not differentiable. Then $\mathrm{m}+\mathrm{n}$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
12

$\lim _\limits{x \rightarrow 0} \operatorname{cosec} x\left(\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}\right)$ is:

JEE Main 2025 (Online) 24th January Morning Shift
13

Let $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function such that $f(x)-6 f\left(\frac{1}{x}\right)=\frac{35}{3 x}-\frac{5}{2}$. If the $\lim\limits _{x \rightarrow 0}\left(\frac{1}{\alpha x}+f(x)\right)=\beta ; \alpha, \beta \in \mathbb{R}$, then $\alpha+2 \beta$ is equal to

JEE Main 2025 (Online) 24th January Morning Shift
14

$\lim \limits_{x \rightarrow \infty} \frac{\left(2 x^2-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^2+5 x+4\right) \sqrt{(3 x+2)^x}}$ is equal to :

JEE Main 2025 (Online) 23rd January Evening Shift
15

If the function

$$ f(x)=\left\{\begin{array}{l} \frac{2}{x}\left\{\sin \left(k_1+1\right) x+\sin \left(k_2-1\right) x\right\}, \quad x<0 \\ 4, \quad x=0 \\ \frac{2}{x} \log _e\left(\frac{2+k_1 x}{2+k_2 x}\right), \quad x>0 \end{array}\right. $$

is continuous at $x=0$, then $k_1^2+k_2^2$ is equal to :

JEE Main 2025 (Online) 23rd January Morning Shift
16

If $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, then the value of $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ equals :

JEE Main 2025 (Online) 22nd January Evening Shift
17

If $\sum_\limits{r=1}^n T_r=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}$, then $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=1}^n\left(\frac{1}{T_r}\right)$ is equal to :

JEE Main 2025 (Online) 22nd January Morning Shift
18

$$\lim _\limits{x \rightarrow 0} \frac{e-(1+2 x)^{\frac{1}{2 x}}}{x}$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
19

For $$\mathrm{a}, \mathrm{b}>0$$, let $$f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$$ be a continuous function at $$x=0$$. Then $$\frac{\mathrm{b}}{\mathrm{a}}$$ is equal to :

JEE Main 2024 (Online) 8th April Evening Shift
20

$$\lim _\limits{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\cdots+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\cdots \cdots+n^3\right)-\left(1^2+2^2+\cdots \cdots+n^2\right)}$$ is equal to :

JEE Main 2024 (Online) 6th April Evening Shift
21

Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :

JEE Main 2024 (Online) 5th April Evening Shift
22

If the function $$f(x)=\frac{\sin 3 x+\alpha \sin x-\beta \cos 3 x}{x^3}, x \in \mathbf{R}$$, is continuous at $$x=0$$, then $$f(0)$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
23

If the function

$$f(x)= \begin{cases}\frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ a \log _e 2 \log _e 3 & , x=0\end{cases}$$

is continuous at $$x=0$$, then the value of $$a^2$$ is equal to

JEE Main 2024 (Online) 4th April Evening Shift
24

Let $$f: \mathbf{R} \rightarrow \mathbf{R}$$ be a function given by

$$f(x)= \begin{cases}\frac{1-\cos 2 x}{x^2}, & x < 0 \\ \alpha, & x=0, \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0\end{cases}$$

where $$\alpha, \beta \in \mathbf{R}$$. If $$f$$ is continuous at $$x=0$$, then $$\alpha^2+\beta^2$$ is equal to :

JEE Main 2024 (Online) 4th April Morning Shift
25
Let $f(x)=\left|2 x^2+5\right| x|-3|, x \in \mathbf{R}$. If $\mathrm{m}$ and $\mathrm{n}$ denote the number of points where $f$ is not continuous and not differentiable respectively, then $\mathrm{m}+\mathrm{n}$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
26
Let $f(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} x \in \mathbf{N}\right.$.

If for some $\mathrm{a} \in \mathbf{N}, f(f(f(\mathrm{a})))=21$, then $\lim\limits_{x \rightarrow \mathrm{a}^{-}}\left\{\frac{|x|^3}{\mathrm{a}}-\left[\frac{x}{\mathrm{a}}\right]\right\}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
27
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as :

$$ f(x)= \begin{cases}\frac{a-b \cos 2 x}{x^2} ; & x<0 \\\\ x^2+c x+2 ; & 0 \leq x \leq 1 \\\\ 2 x+1 ; & x>1\end{cases} $$

If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :
JEE Main 2024 (Online) 1st February Morning Shift
28

Consider the function $$f:(0, \infty) \rightarrow \mathbb{R}$$ defined by $$f(x)=e^{-\left|\log _e x\right|}$$. If $$m$$ and $$n$$ be respectively the number of points at which $$f$$ is not continuous and $$f$$ is not differentiable, then $$m+n$$ is

JEE Main 2024 (Online) 31st January Evening Shift
29

$$\lim _\limits{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^2}$$

JEE Main 2024 (Online) 31st January Morning Shift
30

Let $$g(x)$$ be a linear function and $$f(x)=\left\{\begin{array}{cl}g(x) & , x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} & , x>0\end{array}\right.$$, is continuous at $$x=0$$. If $$f^{\prime}(1)=f(-1)$$, then the value $$g(3)$$ is

JEE Main 2024 (Online) 31st January Morning Shift
31

Consider the function $$f:(0,2) \rightarrow \mathbf{R}$$ defined by $$f(x)=\frac{x}{2}+\frac{2}{x}$$ and the function $$g(x)$$ defined by

$$g(x)=\left\{\begin{array}{ll} \min \lfloor f(t)\}, & 0<\mathrm{t} \leq x \text { and } 0 < x \leq 1 \\ \frac{3}{2}+x, & 1 < x < 2 \end{array} .\right. \text { Then, }$$

JEE Main 2024 (Online) 27th January Evening Shift
32

$$\text { If } \lim _\limits{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3} \text {, then } 2 \alpha-\beta \text { is equal to : }$$

JEE Main 2024 (Online) 27th January Evening Shift
33
Consider the function.

$$ f(x)=\left\{\begin{array}{cc} \frac{\mathrm{a}\left(7 x-12-x^2\right)}{\mathrm{b}\left|x^2-7 x+12\right|} & , x<3 \\\\ 2^{\frac{\sin (x-3)}{x-[x]}} & , x>3 \\\\ \mathrm{~b} & , x=3, \end{array}\right. $$

where $[x]$ denotes the greatest integer less than or equal to $x$. If $\mathrm{S}$ denotes the set of all ordered pairs (a, b) such that $f(x)$ is continuous at $x=3$, then the number of elements in $\mathrm{S}$ is :
JEE Main 2024 (Online) 27th January Morning Shift
34
If $\mathrm{a}=\lim\limits_{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $\mathrm{b}=\lim\limits _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
JEE Main 2024 (Online) 27th January Morning Shift
35
Let $[x]$ denote the greatest integer function and

$f(x)=\max \{1+x+[x], 2+x, x+2[x]\}, 0 \leq x \leq 2$. Let $m$ be the number of

points in $[0,2]$, where $f$ is not continuous and $n$ be the number of points in

$(0,2)$, where $f$ is not differentiable. Then $(m+n)^{2}+2$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
36

If $$\lim_\limits{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{cx e^{-c x}}{2}}{1-\cos (2 x)}=17$$, then $$5 a^{2}+b^{2}$$ is equal to

JEE Main 2023 (Online) 13th April Evening Shift
37

Let $$f$$ and $$g$$ be two functions defined by

$$f(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ |x-1|, & x \geq 0\end{array}\right.$$ and $$\mathrm{g}(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ 1, & x \geq 0\end{array}\right.$$

Then $$(g \circ f)(x)$$ is :

JEE Main 2023 (Online) 11th April Evening Shift
38

Let $$f(x)=\left[x^{2}-x\right]+|-x+[x]|$$, where $$x \in \mathbb{R}$$ and $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then, $$f$$ is :

JEE Main 2023 (Online) 11th April Morning Shift
39

If $$\alpha > \beta > 0$$ are the roots of the equation $$a x^{2}+b x+1=0$$, and $$\lim_\limits{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^{2}+b x+a\right)}{2(1-\alpha x)^{2}}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right), \text { then } \mathrm{k} \text { is equal to }$$ :

JEE Main 2023 (Online) 8th April Evening Shift
40

$$\lim_\limits{x \rightarrow 0}\left(\left(\frac{\left(1-\cos ^{2}(3 x)\right.}{\cos ^{3}(4 x)}\right)\left(\frac{\sin ^{3}(4 x)}{\left(\log _{e}(2 x+1)\right)^{5}}\right)\right)$$ is equal to _____________.

JEE Main 2023 (Online) 8th April Morning Shift
41

Let $$a_{1}, a_{2}, a_{3}, \ldots, a_{\mathrm{n}}$$ be $$\mathrm{n}$$ positive consecutive terms of an arithmetic progression. If $$\mathrm{d} > 0$$ is its common difference, then

$$\lim_\limits{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots \ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)$$ is

JEE Main 2023 (Online) 6th April Morning Shift
42
$$ \lim\limits_{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3 $$
JEE Main 2023 (Online) 31st January Evening Shift
43
Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as

$f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$

$g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$

and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the

value of $\lim\limits_{x \rightarrow 1} g(h(x-1))$ is :
JEE Main 2023 (Online) 30th January Evening Shift
44

Suppose $$f: \mathbb{R} \rightarrow(0, \infty)$$ be a differentiable function such that $$5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}$$. If $$f(3)=320$$, then $$\sum_\limits{n=0}^{5} f(n)$$ is equal to :

JEE Main 2023 (Online) 30th January Morning Shift
45

Let $$x=2$$ be a root of the equation $$x^2+px+q=0$$ and $$f(x) = \left\{ {\matrix{ {{{1 - \cos ({x^2} - 4px + {q^2} + 8q + 16)} \over {{{(x - 2p)}^4}}},} & {x \ne 2p} \cr {0,} & {x = 2p} \cr } } \right.$$

Then $$\mathop {\lim }\limits_{x \to 2{p^ + }} [f(x)]$$, where $$\left[ . \right]$$ denotes greatest integer function, is

JEE Main 2023 (Online) 29th January Morning Shift
46

If the function $$f(x) = \left\{ {\matrix{ {(1 + |\cos x|)^{\lambda \over {|\cos x|}}} & , & {0 < x < {\pi \over 2}} \cr \mu & , & {x = {\pi \over 2}} \cr e^{{{\cot 6x} \over {{}\cot 4x}}} & , & {{\pi \over 2} < x < \pi } \cr } } \right.$$

is continuous at $$x = {\pi \over 2}$$, then $$9\lambda + 6{\log _e}\mu + {\mu ^6} - {e^{6\lambda }}$$ is equal to

JEE Main 2023 (Online) 25th January Evening Shift
47

The value of $$\mathop {\lim }\limits_{n \to \infty } {{1 + 2 - 3 + 4 + 5 - 6\, + \,.....\, + \,(3n - 2) + (3n - 1) - 3n} \over {\sqrt {2{n^4} + 4n + 3} - \sqrt {{n^4} + 5n + 4} }}$$ is :

JEE Main 2023 (Online) 25th January Morning Shift
48

The set of all values of $$a$$ for which $$\mathop {\lim }\limits_{x \to a} ([x - 5] - [2x + 2]) = 0$$, where [$$\alpha$$] denotes the greatest integer less than or equal to $$\alpha$$ is equal to

JEE Main 2023 (Online) 24th January Evening Shift
49

$$\mathop {\lim }\limits_{t \to 0} {\left( {{1^{{1 \over {{{\sin }^2}t}}}} + {2^{{1 \over {{{\sin }^2}t}}}}\, + \,...\, + \,{n^{{1 \over {{{\sin }^2}t}}}}} \right)^{{{\sin }^2}t}}$$ is equal to

JEE Main 2023 (Online) 24th January Morning Shift
50

Let $$f(x) = \left\{ {\matrix{ {{x^2}\sin \left( {{1 \over x}} \right)} & {,\,x \ne 0} \cr 0 & {,\,x = 0} \cr } } \right.$$

Then at $$x=0$$

JEE Main 2023 (Online) 24th January Morning Shift
51

$$ \text { Let the function } f(x)=\left\{\begin{array}{cl} \frac{\log _{e}(1+5 x)-\log _{e}(1+\alpha x)}{x} & ;\text { if } x \neq 0 \\ 10 & ; \text { if } x=0 \end{array} \text { be continuous at } x=0 .\right. $$

Then $$\alpha$$ is equal to

JEE Main 2022 (Online) 29th July Evening Shift
52

If $$\lim\limits_{x \rightarrow 0} \frac{\alpha \mathrm{e}^{x}+\beta \mathrm{e}^{-x}+\gamma \sin x}{x \sin ^{2} x}=\frac{2}{3}$$, where $$\alpha, \beta, \gamma \in \mathbf{R}$$, then which of the following is NOT correct?

JEE Main 2022 (Online) 29th July Morning Shift
53

The number of points, where the function $$f: \mathbf{R} \rightarrow \mathbf{R}$$,

$$f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|$$, is NOT differentiable, is :

JEE Main 2022 (Online) 29th July Morning Shift
54

The function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ defined by

$$f(x)=\lim\limits_{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}$$ is continuous for all x in :

JEE Main 2022 (Online) 28th July Evening Shift
55

If for $$\mathrm{p} \neq \mathrm{q} \neq 0$$, the function $$f(x)=\frac{\sqrt[7]{\mathrm{p}(729+x)}-3}{\sqrt[3]{729+\mathrm{q} x}-9}$$ is continuous at $$x=0$$, then :

JEE Main 2022 (Online) 27th July Evening Shift
56

Let $$\beta=\mathop {\lim }\limits_{x \to 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$$ for some $$\alpha \in \mathbb{R}$$. Then the value of $$\alpha+\beta$$ is :

JEE Main 2022 (Online) 26th July Evening Shift
57

Let f : R $$\to$$ R be a continuous function such that $$f(3x) - f(x) = x$$. If $$f(8) = 7$$, then $$f(14)$$ is equal to :

JEE Main 2022 (Online) 26th July Morning Shift
58

If the function $$f(x) = \left\{ {\matrix{ {{{{{\log }_e}(1 - x + {x^2}) + {{\log }_e}(1 + x + {x^2})} \over {\sec x - \cos x}}} & , & {x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right) - \{ 0\} } \cr k & , & {x = 0} \cr } } \right.$$ is continuous at x = 0, then k is equal to:

JEE Main 2022 (Online) 26th July Morning Shift
59

If $$f(x) = \left\{ {\matrix{ {x + a} & , & {x \le 0} \cr {|x - 4|} & , & {x > 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {x + 1} & , & {x < 0} \cr {{{(x - 4)}^2} + b} & , & {x \ge 0} \cr } } \right.$$ are continuous on R, then $$(gof)(2) + (fog)( - 2)$$ is equal to :

JEE Main 2022 (Online) 26th July Morning Shift
60

Let $$f(x) = \left\{ {\matrix{ {{x^3} - {x^2} + 10x - 7,} & {x \le 1} \cr { - 2x + {{\log }_2}({b^2} - 4),} & {x > 1} \cr } } \right.$$.

Then the set of all values of b, for which f(x) has maximum value at x = 1, is :

JEE Main 2022 (Online) 26th July Morning Shift
61

$$\lim\limits_{x \rightarrow \frac{\pi}{4}} \frac{8 \sqrt{2}-(\cos x+\sin x)^{7}}{\sqrt{2}-\sqrt{2} \sin 2 x}$$ is equal to

JEE Main 2022 (Online) 25th July Evening Shift
62

If $$\mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {{n^2} - n - 1} + n\alpha + \beta } \right) = 0$$, then $$8(\alpha+\beta)$$ is equal to :

JEE Main 2022 (Online) 25th July Morning Shift
63

The value of $$\mathop {\lim }\limits_{x \to 1} {{({x^2} - 1){{\sin }^2}(\pi x)} \over {{x^4} - 2{x^3} + 2x - 1}}$$ is equal to:

JEE Main 2022 (Online) 29th June Evening Shift
64

Let f, g : R $$\to$$ R be functions defined by

$$f(x) = \left\{ {\matrix{ {[x]} & , & {x < 0} \cr {|1 - x|} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{e^x} - x} & , & {x < 0} \cr {{{(x - 1)}^2} - 1} & , & {x \ge 0} \cr } } \right.$$ where [x] denote the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly :

JEE Main 2022 (Online) 28th June Evening Shift
65

The value of

$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$ is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
66

Let f : R $$\to$$ R be defined as

$$f(x) = \left[ {\matrix{ {[{e^x}],} & {x < 0} \cr {a{e^x} + [x - 1],} & {0 \le x < 1} \cr {b + [\sin (\pi x)],} & {1 \le x < 2} \cr {[{e^{ - x}}] - c,} & {x \ge 2} \cr } } \right.$$

where a, b, c $$\in$$ R and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

JEE Main 2022 (Online) 28th June Morning Shift
67

Let a be an integer such that $$\mathop {\lim }\limits_{x \to 7} {{18 - [1 - x]} \over {[x - 3a]}}$$ exists, where [t] is greatest integer $$\le$$ t. Then a is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
68

$$\mathop {\lim }\limits_{x \to 0} {{\cos (\sin x) - \cos x} \over {{x^4}}}$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
69

Let f(x) = min {1, 1 + x sin x}, 0 $$\le$$ x $$\le$$ 2$$\pi $$. If m is the number of points, where f is not differentiable and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to

JEE Main 2022 (Online) 26th June Evening Shift
70

$$\mathop {\lim }\limits_{x \to {1 \over {\sqrt 2 }}} {{\sin ({{\cos }^{ - 1}}x) - x} \over {1 - \tan ({{\cos }^{ - 1}}x)}}$$ is equal to :

JEE Main 2022 (Online) 26th June Morning Shift
71

Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :

JEE Main 2022 (Online) 26th June Morning Shift
72

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{{\tan }^2}x\left( {{{(2{{\sin }^2}x + 3\sin x + 4)}^{{1 \over 2}}} - {{({{\sin }^2}x + 6\sin x + 2)}^{{1 \over 2}}}} \right)} \right)$$ is equal to

JEE Main 2022 (Online) 25th June Evening Shift
73

Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:

JEE Main 2022 (Online) 25th June Morning Shift
74

Let $$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x - [x]}}} & {,\,x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } & {,\,|x| < 1} \cr 1 & {,\,otherwise} \cr } } \right.$$

where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :

JEE Main 2022 (Online) 24th June Evening Shift
75
If $$\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{{{\tan }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$ and $$\beta = \mathop {\lim }\limits_{x \to 0 } {(\cos x)^{\cot x}}$$ are the roots of the equation, ax2 + bx $$-$$ 4 = 0, then the ordered pair (a, b) is :
JEE Main 2021 (Online) 31st August Evening Shift
76
Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then
JEE Main 2021 (Online) 31st August Evening Shift
77
The function

$$f(x) = \left| {{x^2} - 2x - 3} \right|\,.\,{e^{\left| {9{x^2} - 12x + 4} \right|}}$$ is not differentiable at exactly :
JEE Main 2021 (Online) 31st August Morning Shift
78
If the function
$$f(x) = \left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)} & , & {x < 0} \cr k & , & {x = 0} \cr {{{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}} & , & {x > 0} \cr } } \right.$$ is continuous

at x = 0, then $${1 \over a} + {1 \over b} + {4 \over k}$$ is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
79
$$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}\left( {\pi {{\cos }^4}x} \right)} \over {{x^4}}}$$ is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
80
If $$\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {{x^2} - x + 1} - ax} \right) = b$$, then the ordered pair (a, b) is :
JEE Main 2021 (Online) 27th August Evening Shift
81
If $$\alpha$$, $$\beta$$ are the distinct roots of x2 + bx + c = 0, then

$$\mathop {\lim }\limits_{x \to \beta } {{{e^{2({x^2} + bx + c)}} - 1 - 2({x^2} + bx + c)} \over {{{(x - \beta )}^2}}}$$ is equal to :
JEE Main 2021 (Online) 27th August Morning Shift
82
Let [t] denote the greatest integer less than or equal to t. Let
f(x) = x $$-$$ [x], g(x) = 1 $$-$$ x + [x], and h(x) = min{f(x), g(x)}, x $$\in$$ [$$-$$2, 2]. Then h is :
JEE Main 2021 (Online) 26th August Evening Shift
83
$$\mathop {\lim }\limits_{x \to 2} \left( {\sum\limits_{n = 1}^9 {{x \over {n(n + 1){x^2} + 2(2n + 1)x + 4}}} } \right)$$ is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
84
The value of

$$\mathop {\lim }\limits_{x \to 0} \left( {{x \over {\root 8 \of {1 - \sin x} - \root 8 \of {1 + \sin x} }}} \right)$$ is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
85
Let $$f:[0,\infty ) \to [0,3]$$ be a function defined by

$$f(x) = \left\{ {\matrix{ {\max \{ \sin t:0 \le t \le x\} ,} & {0 \le x \le \pi } \cr {2 + \cos x,} & {x > \pi } \cr } } \right.$$

Then which of the following is true?
JEE Main 2021 (Online) 27th July Evening Shift
86
Let $$f:\left( { - {\pi \over 4},{\pi \over 4}} \right) \to R$$ be defined as $$f(x) = \left\{ {\matrix{ {{{(1 + |\sin x|)}^{{{3a} \over {|\sin x|}}}}} & , & { - {\pi \over 4} < x < 0} \cr b & , & {x = 0} \cr {{e^{\cot 4x/\cot 2x}}} & , & {0 < x < {\pi \over 4}} \cr } } \right.$$

If f is continuous at x = 0, then the value of 6a + b2 is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
87
Let f : R $$\to$$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $$\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
88
Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$$

where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $$\lambda$$ + $$\mu$$ is equal to :
JEE Main 2021 (Online) 25th July Morning Shift
89
Let f : R $$\to$$ R be defined as $$f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$$

If f is continuous at x = 0, then $$\alpha$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
90
If $$f:R \to R$$ is given by $$f(x) = x + 1$$, then the value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\left[ {f(0) + f\left( {{5 \over n}} \right) + f\left( {{{10} \over n}} \right) + ...... + f\left( {{{5(n - 1)} \over n}} \right)} \right]$$ is :
JEE Main 2021 (Online) 20th July Evening Shift
91
Let a function f : R $$\to$$ R be defined as $$f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$$

where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:
JEE Main 2021 (Online) 20th July Morning Shift
92
Let f : R $$ \to $$ R be a function defined as

$$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin 2x} \over {2x}},if\,x < 0 \hfill \cr b,\,if\,x\, = 0 \hfill \cr {{\sqrt {x + b{x^3}} - \sqrt x } \over {b{x^{5/2}}}},\,if\,x > 0 \hfill \cr} \right.$$

If f is continuous at x = 0, then the value of a + b is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
93
If $$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^{ - 1}}x - {{\tan }^{ - 1}}x} \over {3{x^3}}}$$ is equal to L, then the value of (6L + 1) is
JEE Main 2021 (Online) 18th March Morning Shift
94
If $$f(x) = \left\{ {\matrix{ {{1 \over {|x|}}} & {;\,|x|\, \ge 1} \cr {a{x^2} + b} & {;\,|x|\, < 1} \cr } } \right.$$ is differentiable at every point of the domain, then the values of a and b are respectively :
JEE Main 2021 (Online) 18th March Morning Shift
95
The value of the limit

$$\mathop {\lim }\limits_{\theta \to 0} {{\tan (\pi {{\cos }^2}\theta )} \over {\sin (2\pi {{\sin }^2}\theta )}}$$ is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
96
The value of $$\mathop {\lim }\limits_{n \to \infty } {{[r] + [2r] + ... + [nr]} \over {{n^2}}}$$, where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
97
The value of
$$\mathop {\lim }\limits_{x \to {0^ + }} {{{{\cos }^{ - 1}}(x - {{[x]}^2}).{{\sin }^{ - 1}}(x - {{[x]}^2})} \over {x - {x^3}}}$$, where [ x ] denotes the greatest integer $$ \le $$ x is :
JEE Main 2021 (Online) 17th March Morning Shift
98
Let f : S $$ \to $$ S where S = (0, $$\infty $$) be a twice differentiable function such that f(x + 1) = xf(x). If g : S $$ \to $$ R be defined as g(x) = loge f(x), then the value of |g''(5) $$-$$ g''(1)| is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
99
Let $$\alpha$$ $$\in$$ R be such that the function $$f(x) = \left\{ {\matrix{ {{{{{\cos }^{ - 1}}(1 - {{\{ x\} }^2}){{\sin }^{ - 1}}(1 - \{ x\} )} \over {\{ x\} - {{\{ x\} }^3}}},} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$$ is continuous at x = 0, where {x} = x $$-$$ [ x ] is the greatest integer less than or equal to x. Then :
JEE Main 2021 (Online) 16th March Evening Shift
100
Let $${S_k} = \sum\limits_{r = 1}^k {{{\tan }^{ - 1}}\left( {{{{6^r}} \over {{2^{2r + 1}} + {3^{2r + 1}}}}} \right)} $$. Then $$\mathop {\lim }\limits_{k \to \infty } {S_k}$$ is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
101
Let the functions f : R $$ \to $$ R and g : R $$ \to $$ R be defined as :

$$f(x) = \left\{ {\matrix{ {x + 2,} & {x < 0} \cr {{x^2},} & {x \ge 0} \cr } } \right.$$ and

$$g(x) = \left\{ {\matrix{ {{x^3},} & {x < 1} \cr {3x - 2,} & {x \ge 1} \cr } } \right.$$

Then, the number of points in R where (fog) (x) is NOT differentiable is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
102
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4.

Then $$\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$$ equals :
JEE Main 2021 (Online) 26th February Evening Shift
103
Let $$f(x) = {\sin ^{ - 1}}x$$ and $$g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$$. If $$g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$$, then the domain of the function fog is :
JEE Main 2021 (Online) 26th February Evening Shift
104
Let f : R $$ \to $$ R be defined as

$$f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$$ If f(x) is continuous on R, then a + b equals :
JEE Main 2021 (Online) 26th February Evening Shift
105
The value of $$\mathop {\lim }\limits_{h \to 0} 2\left\{ {{{\sqrt 3 \sin \left( {{\pi \over 6} + h} \right) - \cos \left( {{\pi \over 6} + h} \right)} \over {\sqrt 3 h\left( {\sqrt 3 \cosh - \sinh } \right)}}} \right\}$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
106
$$\mathop {\lim }\limits_{n \to \infty } {\left( {1 + {{1 + {1 \over 2} + ........ + {1 \over n}} \over {{n^2}}}} \right)^n}$$ is equal to :
JEE Main 2021 (Online) 25th February Morning Shift
107
If f : R $$ \to $$ R is a function defined by f(x)= [x - 1] $$\cos \left( {{{2x - 1} \over 2}} \right)\pi $$, where [.] denotes the greatest integer function, then f is :
JEE Main 2021 (Online) 24th February Morning Shift
108
Let f : R $$ \to $$ R be a function defined by
f(x) = max {x, x2}. Let S denote the set of all points in R, where f is not differentiable. Then :
JEE Main 2020 (Online) 6th September Evening Slot
109
For all twice differentiable functions f : R $$ \to $$ R,
with f(0) = f(1) = f'(0) = 0
JEE Main 2020 (Online) 6th September Evening Slot
110
$$\mathop {\lim }\limits_{x \to 0} {{x\left( {{e^{\left( {\sqrt {1 + {x^2} + {x^4}} - 1} \right)/x}} - 1} \right)} \over {\sqrt {1 + {x^2} + {x^4}} - 1}}$$
JEE Main 2020 (Online) 5th September Evening Slot
111
If the function
$$f\left( x \right) = \left\{ {\matrix{ {{k_1}{{\left( {x - \pi } \right)}^2} - 1,} & {x \le \pi } \cr {{k_2}\cos x,} & {x > \pi } \cr } } \right.$$ is
twice differentiable, then the ordered pair (k1, k2) is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
112
If $$\alpha $$ is positive root of the equation, p(x) = x2 - x - 2 = 0, then

$$\mathop {\lim }\limits_{x \to {\alpha ^ + }} {{\sqrt {1 - \cos \left( {p\left( x \right)} \right)} } \over {x + \alpha - 4}}$$ is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
113
Let $$f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$$ be a differentiable function such that f(1) = e and
$$\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$$. If f(x) = 1, then x is equal to :
JEE Main 2020 (Online) 4th September Evening Slot
114
The function
$$f(x) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} & {\left| x \right| \le 1} \cr {{1 \over 2}\left( {\left| x \right| - 1} \right),} & {\left| x \right| > 1} \cr } } \right.$$ is :
JEE Main 2020 (Online) 4th September Evening Slot
115
$$\mathop {\lim }\limits_{x \to a} {{{{\left( {a + 2x} \right)}^{{1 \over 3}}} - {{\left( {3x} \right)}^{{1 \over 3}}}} \over {{{\left( {3a + x} \right)}^{{1 \over 3}}} - {{\left( {4x} \right)}^{{1 \over 3}}}}}$$ ($$a$$ $$ \ne $$ 0) is equal to :
JEE Main 2020 (Online) 3rd September Evening Slot
116
Let [t] denote the greatest integer $$ \le $$ t. If for some
$$\lambda $$ $$ \in $$ R - {1, 0}, $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$$ = L, then L is equal to :
JEE Main 2020 (Online) 3rd September Morning Slot
117
$$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {{\pi \over 4} + x} \right)} \right)^{{1 \over x}}}$$ is equal to :
JEE Main 2020 (Online) 2nd September Evening Slot
118
If a function f(x) defined by

$$f\left( x \right) = \left\{ {\matrix{ {a{e^x} + b{e^{ - x}},} & { - 1 \le x < 1} \cr {c{x^2},} & {1 \le x \le 3} \cr {a{x^2} + 2cx,} & {3 < x \le 4} \cr } } \right.$$

be continuous for some $$a$$, b, c $$ \in $$ R and f'(0) + f'(2) = e, then the value of of $$a$$ is :
JEE Main 2020 (Online) 2nd September Morning Slot
119
Let [t] denote the greatest integer $$ \le $$ t and $$\mathop {\lim }\limits_{x \to 0} x\left[ {{4 \over x}} \right] = A$$.
Then the function, f(x) = [x2]sin($$\pi $$x) is discontinuous, when x is equal to :
JEE Main 2020 (Online) 9th January Evening Slot
120
Let ƒ be any function continuous on [a, b] and twice differentiable on (a, b). If for all x $$ \in $$ (a, b), ƒ'(x) > 0 and ƒ''(x) < 0, then for any c $$ \in $$ (a, b), $${{f(c) - f(a)} \over {f(b) - f(c)}}$$ is greater than :
JEE Main 2020 (Online) 9th January Morning Slot
121
If $$f(x) = \left\{ {\matrix{ {{{\sin (a + 2)x + \sin x} \over x};} & {x < 0} \cr {b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,;} & {x = 0} \cr {{{{{\left( {x + 3{x^2}} \right)}^{{1 \over 3}}} - {x^{ {1 \over 3}}}} \over {{x^{{4 \over 3}}}}};} & {x > 0} \cr } } \right.$$
is continuous at x = 0, then a + 2b is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
122
Let S be the set of all functions ƒ : [0,1] $$ \to $$ R, which are continuous on [0,1] and differentiable on (0,1). Then for every ƒ in S, there exists a c $$ \in $$ (0,1), depending on ƒ, such that
JEE Main 2020 (Online) 8th January Evening Slot
123
$$\mathop {\lim }\limits_{x \to 0} {\left( {{{3{x^2} + 2} \over {7{x^2} + 2}}} \right)^{{1 \over {{x^2}}}}}$$ is equal to
JEE Main 2020 (Online) 8th January Morning Slot
124
$$\mathop {\lim }\limits_{x \to 0} {{x + 2\sin x} \over {\sqrt {{x^2} + 2\sin x + 1} - \sqrt {{{\sin }^2}x - x + 1} }}$$ is :
JEE Main 2019 (Online) 12th April Evening Slot
125
Let f(x) = 5 – |x – 2| and g(x) = |x + 1|, x $$ \in $$ R. If f(x) attains maximum value at $$\alpha $$ and g(x) attains minimum value at $$\beta $$, then $$\mathop {\lim }\limits_{x \to -\alpha \beta } {{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)} \over {{x^2} - 6x + 8}}$$ is equal to :
JEE Main 2019 (Online) 12th April Evening Slot
126
If $$\alpha $$ and $$\beta $$ are the roots of the equation 375x2 – 25x – 2 = 0, then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\alpha ^r}} + \mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\beta ^r}} $$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
127
If $$\mathop {\lim }\limits_{x \to 1} {{{x^2} - ax + b} \over {x - 1}} = 5$$, then a + b is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
128
If $$\mathop {\lim }\limits_{x \to 1} {{{x^4} - 1} \over {x - 1}} = \mathop {\lim }\limits_{x \to k} {{{x^3} - {k^3}} \over {{x^2} - {k^2}}}$$, then k is :
JEE Main 2019 (Online) 10th April Morning Slot
129
Let f : R $$ \to $$ R be differentiable at c $$ \in $$ R and f(c) = 0. If g(x) = |f(x)| , then at x = c, g is :
JEE Main 2019 (Online) 10th April Morning Slot
130
If$$f(x) = \left\{ {\matrix{ {{{\sin (p + 1)x + \sin x} \over x}} & {,x < 0} \cr q & {,x = 0} \cr {{{\sqrt {x + {x^2}} - \sqrt x } \over {{x^{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}}}} & {,x > 0} \cr } } \right.$$
is continuous at x = 0, then the ordered pair (p, q) is equal to
JEE Main 2019 (Online) 10th April Morning Slot
131
If $$f(x) = [x] - \left[ {{x \over 4}} \right]$$ ,x $$ \in $$ 4 , where [x] denotes the greatest integer function, then
JEE Main 2019 (Online) 9th April Evening Slot
132
If the function $$f(x) = \left\{ {\matrix{ {a|\pi - x| + 1,x \le 5} \cr {b|x - \pi | + 3,x > 5} \cr } } \right.$$
is continuous at x = 5, then the value of a – b is :-
JEE Main 2019 (Online) 9th April Evening Slot
133
Let ƒ(x) = 15 – |x – 10|; x $$ \in $$ R. Then the set of all values of x, at which the function, g(x) = ƒ(ƒ(x)) is not differentiable, is :
JEE Main 2019 (Online) 9th April Morning Slot
134
If the function ƒ defined on , $$\left( {{\pi \over 6},{\pi \over 3}} \right)$$ by $$$f(x) = \left\{ {\matrix{ {{{\sqrt 2 {\mathop{\rm cosx}\nolimits} - 1} \over {\cot x - 1}},} & {x \ne {\pi \over 4}} \cr {k,} & {x = {\pi \over 4}} \cr } } \right.$$$ is continuous, then k is equal to
JEE Main 2019 (Online) 9th April Morning Slot
135
Let ƒ : R $$ \to $$ R be a differentiable function satisfying ƒ'(3) + ƒ'(2) = 0.
Then $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$ is equal to
JEE Main 2019 (Online) 8th April Evening Slot
136
Let ƒ : [–1,3] $$ \to $$ R be defined as

$$f(x) = \left\{ {\matrix{ {\left| x \right| + \left[ x \right]} & , & { - 1 \le x < 1} \cr {x + \left| x \right|} & , & {1 \le x < 2} \cr {x + \left[ x \right]} & , & {2 \le x \le 3} \cr } } \right.$$

where [t] denotes the greatest integer less than or equal to t. Then, ƒ is discontinuous at:
JEE Main 2019 (Online) 8th April Evening Slot
137
$$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}x} \over {\sqrt 2 - \sqrt {1 + \cos x} }}$$ equals:
JEE Main 2019 (Online) 8th April Morning Slot
138
$$\mathop {\lim }\limits_{x \to {1^ - }} {{\sqrt \pi - \sqrt {2{{\sin }^{ - 1}}x} } \over {\sqrt {1 - x} }}$$ is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
139
Let f be a differentiable function such that f(1) = 2 and f '(x) = f(x) for all x $$ \in $$ R R. If h(x) = f(f(x)), then h'(1) is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
140
$$\mathop {\lim }\limits_{x \to \pi /4} {{{{\cot }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$ is :
JEE Main 2019 (Online) 12th January Morning Slot
141
Let S be the set of all points in (–$$\pi $$, $$\pi $$) at which the function, f(x) = min{sin x, cos x} is not differentiable. Then S is a subset of which of the following ?
JEE Main 2019 (Online) 12th January Morning Slot
142
Let K be the set of all real values of x where the function f(x) = sin |x| – |x| + 2(x – $$\pi $$) cos |x| is not differentiable. Then the set K is equal to :
JEE Main 2019 (Online) 11th January Evening Slot
143
$$\mathop {\lim }\limits_{x \to 0} {{x\cot \left( {4x} \right)} \over {{{\sin }^2}x{{\cot }^2}\left( {2x} \right)}}$$ is equal to :
JEE Main 2019 (Online) 11th January Evening Slot
144
Let [x] denote the greatest integer less than or equal to x. Then $$\mathop {\lim }\limits_{x \to 0} {{\tan \left( {\pi {{\sin }^2}x} \right) + {{\left( {\left| x \right| - \sin \left( {x\left[ x \right]} \right)} \right)}^2}} \over {{x^2}}}$$
JEE Main 2019 (Online) 11th January Morning Slot
145
Let $$f\left( x \right) = \left\{ {\matrix{ { - 1} & { - 2 \le x < 0} \cr {{x^2} - 1,} & {0 \le x \le 2} \cr } } \right.$$ and

$$g(x) = \left| {f\left( x \right)} \right| + f\left( {\left| x \right|} \right).$$

Then, in the interval (–2, 2), g is :
JEE Main 2019 (Online) 11th January Morning Slot
146
Let f : ($$-$$1, 1) $$ \to $$ R be a function defined by f(x) = max $$\left\{ { - \left| x \right|, - \sqrt {1 - {x^2}} } \right\}.$$ If K be the set of all points at which f is not differentiable, then K has exactly -
JEE Main 2019 (Online) 10th January Evening Slot
147
For each t $$ \in $$ R , let [t] be the greatest integer less than or equal to t

Then  $$\mathop {\lim }\limits_{x \to 1^ + } {{\left( {1 - \left| x \right| + \sin \left| {1 - x} \right|} \right)\sin \left( {{\pi \over 2}\left[ {1 - x} \right]} \right)} \over {\left| {1 - x} \right|.\left[ {1 - x} \right]}}$$
JEE Main 2019 (Online) 10th January Morning Slot
148
Let  $$f\left( x \right) = \left\{ {\matrix{ {\max \left\{ {\left| x \right|,{x^2}} \right\}} & {\left| x \right| \le 2} \cr {8 - 2\left| x \right|} & {2 < \left| x \right| \le 4} \cr } } \right.$$

Let S be the set of points in the interval (– 4, 4) at which f is not differentiable. Then S
JEE Main 2019 (Online) 10th January Morning Slot
149
For each x$$ \in $$R, let [x] be the greatest integer less than or equal to x.

Then $$\mathop {\lim }\limits_{x \to {0^ - }} \,\,{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]} \over {\left| x \right|}}$$ is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
150
Let f : R $$ \to $$ R be a function defined as
$$f(x) = \left\{ {\matrix{ 5 & ; & {x \le 1} \cr {a + bx} & ; & {1 < x < 3} \cr {b + 5x} & ; & {3 \le x < 5} \cr {30} & ; & {x \ge 5} \cr } } \right.$$

Then, f is
JEE Main 2019 (Online) 9th January Morning Slot
151
$$\mathop {\lim }\limits_{y \to 0} {{\sqrt {1 + \sqrt {1 + {y^4}} } - \sqrt 2 } \over {{y^4}}}$$
JEE Main 2019 (Online) 9th January Morning Slot
152
$$\mathop {\lim }\limits_{x \to 0} \,\,{{{{\left( {27 + x} \right)}^{{1 \over 3}}} - 3} \over {9 - {{\left( {27 + x} \right)}^{{2 \over 3}}}}}$$ equals.
JEE Main 2018 (Online) 16th April Morning Slot
153
If the function f defined as

$$f\left( x \right) = {1 \over x} - {{k - 1} \over {{e^{2x}} - 1}},x \ne 0,$$ is continuous at

x = 0, then the ordered pair (k, f(0)) is equal to :
JEE Main 2018 (Online) 16th April Morning Slot
154
Let S = { t $$ \in R:f(x) = \left| {x - \pi } \right|.\left( {{e^{\left| x \right|}} - 1} \right)$$$$\sin \left| x \right|$$ is not differentiable at t}, then the set S is equal to
JEE Main 2018 (Offline)
155
For each t $$ \in R$$, let [t] be the greatest integer less than or equal to t.

Then $$\mathop {\lim }\limits_{x \to {0^ + }} x\left( {\left[ {{1 \over x}} \right] + \left[ {{2 \over x}} \right] + ..... + \left[ {{{15} \over x}} \right]} \right)$$
JEE Main 2018 (Offline)
156
Let f(x) be a polynomial of degree $$4$$ having extreme values at $$x = 1$$ and $$x = 2.$$

If   $$\mathop {lim}\limits_{x \to 0} \left( {{{f\left( x \right)} \over {{x^2}}} + 1} \right) = 3$$   then f($$-$$1) is equal to :
JEE Main 2018 (Online) 15th April Evening Slot
157
Let f(x) = $$\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$$

Thevaue of k for which f s continuous at x = 2 is :
JEE Main 2018 (Online) 15th April Evening Slot
158
$$\mathop {\lim }\limits_{x \to 0} {{x\tan 2x - 2x\tan x} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ equals :
JEE Main 2018 (Online) 15th April Evening Slot
159
Let S = {($$\lambda $$, $$\mu $$) $$ \in $$ R $$ \times $$ R : f(t) = (|$$\lambda $$| e|t| $$-$$ $$\mu $$). sin (2|t|), t $$ \in $$ R, is a differentiable function}. Then S is a subset of :
JEE Main 2018 (Online) 15th April Morning Slot
160
The value of k for which the function

$$f\left( x \right) = \left\{ {\matrix{ {{{\left( {{4 \over 5}} \right)}^{{{\tan \,4x} \over {\tan \,5x}}}}\,\,,} & {0 < x < {\pi \over 2}} \cr {k + {2 \over 5}\,\,\,,} & {x = {\pi \over 2}} \cr } } \right.$$

is continuous at x = $${\pi \over 2},$$ is :
JEE Main 2017 (Online) 9th April Morning Slot
161
$$\mathop {\lim }\limits_{x \to 3} $$ $${{\sqrt {3x} - 3} \over {\sqrt {2x - 4} - \sqrt 2 }}$$ is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
162
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{\cot x - \cos x} \over {{{\left( {\pi - 2x} \right)}^3}}}$$ equals
JEE Main 2017 (Offline)
163
Let a, b $$ \in $$ R, (a $$ \ne $$ 0). If the function f defined as

$$f\left( x \right) = \left\{ {\matrix{ {{{2{x^2}} \over a}\,\,,} & {0 \le x < 1} \cr {a\,\,\,,} & {1 \le x < \sqrt 2 } \cr {{{2{b^2} - 4b} \over {{x^3}}},} & {\sqrt 2 \le x < \infty } \cr } } \right.$$

is continuous in the interval [0, $$\infty $$), then an ordered pair ( a, b) is :
JEE Main 2016 (Online) 10th April Morning Slot
164
$$\mathop {\lim }\limits_{x \to 0} \,{{{{\left( {1 - \cos 2x} \right)}^2}} \over {2x\,\tan x\, - x\tan 2x}}$$ is :
JEE Main 2016 (Online) 10th April Morning Slot
165
If the function

f(x) = $$\left\{ {\matrix{ { - x} & {x < 1} \cr {a + {{\cos }^{ - 1}}\left( {x + b} \right),} & {1 \le x \le 2} \cr } } \right.$$

is differentiable at x = 1, then $${a \over b}$$ is equal to :
JEE Main 2016 (Online) 9th April Morning Slot
166
If    $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} - {4 \over {{x^2}}}} \right)^{2x}} = {e^3},$$ then 'a' is equal to :
JEE Main 2016 (Online) 9th April Morning Slot
167
For $$x \in \,R,\,\,f\left( x \right) = \left| {\log 2 - \sin x} \right|\,\,$$

and $$\,\,g\left( x \right) = f\left( {f\left( x \right)} \right),\,\,$$ then :
JEE Main 2016 (Offline)
168
Let $$p = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + {{\tan }^2}\sqrt x } \right)^{{1 \over {2x}}}}$$ then $$log$$ $$p$$ is equal to :
JEE Main 2016 (Offline)
169
$$\mathop {\lim }\limits_{x \to 0} {{\left( {1 - \cos 2x} \right)\left( {3 + \cos x} \right)} \over {x\tan 4x}}$$ is equal to
JEE Main 2015 (Offline)
170
If the function.

$$g\left( x \right) = \left\{ {\matrix{ {k\sqrt {x + 1} ,} & {0 \le x \le 3} \cr {m\,x + 2,} & {3 < x \le 5} \cr } } \right.$$

is differentiable, then the value of $$k+m$$ is :
JEE Main 2015 (Offline)
171
$$\mathop {\lim }\limits_{x \to 0} {{\sin \left( {\pi {{\cos }^2}x} \right)} \over {{x^2}}}$$ is equal to :
JEE Main 2014 (Offline)
172
$$\mathop {\lim }\limits_{x \to 0} {{\left( {1 - \cos 2x} \right)\left( {3 + \cos x} \right)} \over {x\tan 4x}}$$ is equal to
JEE Main 2013 (Offline)
173
If $$f:R \to R$$ is a function defined by

$$f\left( x \right) = \left[ x \right]\cos \left( {{{2x - 1} \over 2}} \right)\pi $$,

where [x] denotes the greatest integer function, then $$f$$ is
AIEEE 2012
174
Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,x \in R$$

Statement - 1 : $$f'\left( 4 \right) = 0$$

Statement - 2 : $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f$$(2) = $$f$$(5)
AIEEE 2012
175
$$\mathop {\lim }\limits_{x \to 2} \left( {{{\sqrt {1 - \cos \left\{ {2(x - 2)} \right\}} } \over {x - 2}}} \right)$$
AIEEE 2011
176
The value of $$p$$ and $$q$$ for which the function

$$f\left( x \right) = \left\{ {\matrix{ {{{\sin (p + 1)x + \sin x} \over x}} & {,x < 0} \cr q & {,x = 0} \cr {{{\sqrt {x + {x^2}} - \sqrt x } \over {{x^{3/2}}}}} & {,x > 0} \cr } } \right.$$

is continuous for all $$x$$ in R, are
AIEEE 2011
177
Let $$f:R \to R$$ be a positive increasing function with

$$\mathop {\lim }\limits_{x \to \infty } {{f(3x)} \over {f(x)}} = 1$$. Then $$\mathop {\lim }\limits_{x \to \infty } {{f(2x)} \over {f(x)}} = $$
AIEEE 2010
178
Let $$f\left( x \right) = x\left| x \right|$$ and $$g\left( x \right) = \sin x.$$
Statement-1: gof is differentiable at $$x=0$$ and its derivative is continuous at that point.
Statement-2: gof is twice differentiable at $$x=0$$.
AIEEE 2009
179
Let $$f\left( x \right) = \left\{ {\matrix{ {\left( {x - 1} \right)\sin {1 \over {x - 1}}} & {if\,x \ne 1} \cr 0 & {if\,x = 1} \cr } } \right.$$

Then which one of the following is true?
AIEEE 2008
180
Let $$f:R \to R$$ be a function defined by

$$f(x) = \min \left\{ {x + 1,\left| x \right| + 1} \right\}$$, then which of the following is true?
AIEEE 2007
181
The function $$f:R/\left\{ 0 \right\} \to R$$ given by

$$f\left( x \right) = {1 \over x} - {2 \over {{e^{2x}} - 1}}$$

can be made continuous at $$x$$ = 0 by defining $$f$$(0) as
AIEEE 2007
182
The set of points where $$f\left( x \right) = {x \over {1 + \left| x \right|}}$$ is differentiable is
AIEEE 2006
183
Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a{x^2} + bx + c = 0$$, then

$$\mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \left( {a{x^2} + bx + c} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$ is equal to
AIEEE 2005
184
Suppose $$f(x)$$ is differentiable at x = 1 and

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}f\left( {1 + h} \right) = 5$$, then $$f'\left( 1 \right)$$ equals
AIEEE 2005
185
If $$f$$ is a real valued differentiable function satisfying

$$\left| {f\left( x \right) - f\left( y \right)} \right|$$ $$ \le {\left( {x - y} \right)^2}$$, $$x, y$$ $$ \in R$$
and $$f(0)$$ = 0, then $$f(1)$$ equals
AIEEE 2005
186
Let $$f(x) = {{1 - \tan x} \over {4x - \pi }}$$, $$x \ne {\pi \over 4}$$, $$x \in \left[ {0,{\pi \over 2}} \right]$$.

If $$f(x)$$ is continuous in $$\left[ {0,{\pi \over 2}} \right]$$, then $$f\left( {{\pi \over 4}} \right)$$ is
AIEEE 2004
187
If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} + {b \over {{x^2}}}} \right)^{2x}} = {e^2}$$, then the value of $$a$$ and $$b$$, are
AIEEE 2004
188
If $$\mathop {\lim }\limits_{x \to 0} {{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)} \over x}$$ = k, the value of k is
AIEEE 2003
189
Let $$f(a) = g(a) = k$$ and their nth derivatives
$${f^n}(a)$$, $${g^n}(a)$$ exist and are not equal for some n. Further if

$$\mathop {\lim }\limits_{x \to a} {{f(a)g(x) - f(a) - g(a)f(x) + f(a)} \over {g(x) - f(x)}} = 4$$

then the value of k is
AIEEE 2003
190
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{\left[ {1 - \tan \left( {{x \over 2}} \right)} \right]\left[ {1 - \sin x} \right]} \over {\left[ {1 + \tan \left( {{x \over 2}} \right)} \right]{{\left[ {\pi - 2x} \right]}^3}}}$$ is
AIEEE 2003
191
If $$f(x) = \left\{ {\matrix{ {x{e^{ - \left( {{1 \over {\left| x \right|}} + {1 \over x}} \right)}}} & {,x \ne 0} \cr 0 & {,x = 0} \cr } } \right.$$

then $$f(x)$$ is
AIEEE 2003
192
$$\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - \cos 2x} } \over {\sqrt 2 x}}$$ is
AIEEE 2002
193
$$\mathop {\lim }\limits_{x \to \infty } {\left( {{{{x^2} + 5x + 3} \over {{x^2} + x + 2}}} \right)^x}$$
AIEEE 2002
194
Let $$f(2) = 4$$ and $$f'(x) = 4.$$

Then $$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$ is given by
AIEEE 2002
195
$$\mathop {\lim }\limits_{x \to 0} {{\log {x^n} - \left[ x \right]} \over {\left[ x \right]}}$$, $$n \in N$$, ( [x] denotes the greatest integer less than or equal to x )
AIEEE 2002
196
If $$f\left( 1 \right) = 1,{f'}\left( 1 \right) = 2,$$ then
$$\mathop {\lim }\limits_{x \to 1} {{\sqrt {f\left( x \right)} - 1} \over {\sqrt x - 1}}$$ is
AIEEE 2002
197
$$f$$ is defined in $$\left[ { - 5,5} \right]$$ as

$$f\left( x \right) = x$$ if $$x$$ is rational

$$\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$ = - x$$ if $$x$$ is irrational. Then
AIEEE 2002
198
f(x) and g(x) are two differentiable functions on [0, 2] such that

f''(x) - g''(x) = 0, f'(1) = 2, g'(1) = 4, f(2) = 3, g(2) = 9

then f(x) - g(x) at x = $${3 \over 2}$$ is
AIEEE 2002
199
If f(x + y) = f(x).f(y) $$\forall $$ x, y and f(5) = 2, f'(0) = 3, then
f'(5) is
AIEEE 2002
Numerical
1
If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}$ is continuous at $x=0$, then $f(0)$ is equal to ____________.
JEE Main 2025 (Online) 7th April Evening Shift
2

For $\mathrm{t}>-1$, let $\alpha_{\mathrm{t}}$ and $\beta_{\mathrm{t}}$ be the roots of the equation

$$ \left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 \text {. If } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim \limits_{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b} \text {, } $$

then $72(a+b)^2$ is equal to ___________.

JEE Main 2025 (Online) 7th April Evening Shift
3

The number of points of discontinuity of the function $f(x)=\left[\frac{x^2}{2}\right]-[\sqrt{x}], x \in[0,4]$, where $[\cdot]$ denotes the greatest integer function, is ________.

JEE Main 2025 (Online) 7th April Morning Shift
4

Let $m$ and $n$ be the number of points at which the function $f(x)=\max \left\{x, x^3, x^5, \ldots x^{21}\right\}, x \in \mathbb{R}$, is not differentiable and not continuous, respectively. Then $m+n$ is equal to _________.

JEE Main 2025 (Online) 4th April Morning Shift
5
$$If\,\,\mathop {\lim }\limits_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}=p \text {, then } 96 \log _{\mathrm{e}} p \text { is equal to____________ }$$
JEE Main 2025 (Online) 3rd April Evening Shift
6

Let [t] be the greatest integer less than or equal to t. Then the least value of p ∈ N for which

$ \lim\limits_{x \to 0^+} \left( x (\left[ \frac{1}{x} \right] + \left[ \frac{2}{x} \right] + \ldots + \left[ \frac{p}{x} \right] \right) - x^2 \left( \left[ \frac{1}{x^2} \right] + \left[ \frac{2^2}{x^2} \right] + \ldots + \left[ \frac{9^2}{x^2} \right] \right) \geq 1 $ is equal to _______.

JEE Main 2025 (Online) 29th January Morning Shift
7

Let $f(x)=\lim \limits_{n \rightarrow \infty} \sum\limits_{r=0}^n\left(\frac{\tan \left(x / 2^{r+1}\right)+\tan ^3\left(x / 2^{r+1}\right)}{1-\tan ^2\left(x / 2^{r+1}\right)}\right)$ Then $\lim\limits_{x \rightarrow 0} \frac{e^x-e^{f(x)}}{(x-f(x))}$ is equal to ___________.

JEE Main 2025 (Online) 28th January Evening Shift
8

Let $\mathrm{f}(x)=\left\{\begin{array}{lc}3 x, & x<0 \\ \min \{1+x+[x], x+2[x]\}, & 0 \leq x \leq 2 \\ 5, & x>2\end{array}\right.$

where [.] denotes greatest integer function. If $\alpha$ and $\beta$ are the number of points, where $f$ is not continuous and is not differentiable, respectively, then $\alpha+\beta$ equals _______ .

JEE Main 2025 (Online) 28th January Morning Shift
9

Let the function,

$$f(x)= \begin{cases}-3 \mathrm{ax}^2-2, & x<1 \\ \mathrm{a}^2+\mathrm{b} x, & x \geqslant 1\end{cases}$$

be differentiable for all $x \in \mathbf{R}$, where $\mathrm{a}>1, \mathrm{~b} \in \mathbf{R}$. If the area of the region enclosed by $y=f(x)$ and the line $y=-20$ is $\alpha+\beta \sqrt{3}, \alpha, \beta \in Z$, then the value of $\alpha+\beta$ is ___________ .

JEE Main 2025 (Online) 22nd January Morning Shift
10

Let $$f:(0, \pi) \rightarrow \mathbf{R}$$ be a function given by $$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, & 0< x<\frac{\pi}{2} \\ \mathrm{a}-8, & x=\frac{\pi}{2} \\ (1+\mid \cot x)^{\frac{\mathrm{b}}{\mathrm{a}}|\tan x|}, & \frac{\pi}{2} < x < \pi\end{array}\right.$$

where $$\mathrm{a}, \mathrm{b} \in \mathbf{Z}$$. If $$f$$ is continuous at $$x=\frac{\pi}{2}$$, then $$\mathrm{a}^2+\mathrm{b}^2$$ is equal to _________.

JEE Main 2024 (Online) 9th April Morning Shift
11

If $$\alpha=\lim _\limits{x \rightarrow 0^{+}}\left(\frac{\mathrm{e}^{\sqrt{\tan x}}-\mathrm{e}^{\sqrt{x}}}{\sqrt{\tan x}-\sqrt{x}}\right)$$ and $$\beta=\lim _\limits{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}$$ are the roots of the quadratic equation $$\mathrm{a} x^2+\mathrm{b} x-\sqrt{\mathrm{e}}=0$$, then $$12 \log _{\mathrm{e}}(\mathrm{a}+\mathrm{b})$$ is equal to _________.

JEE Main 2024 (Online) 8th April Evening Shift
12

The value of $$\lim _\limits{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots . \sqrt[10]{\cos 10 x}}{x^2}\right)$$ is __________.

JEE Main 2024 (Online) 8th April Morning Shift
13

Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Let $$f:[0, \infty) \rightarrow \mathbf{R}$$ be a function defined by $$f(x)=\left[\frac{x}{2}+3\right]-[\sqrt{x}]$$. Let $$\mathrm{S}$$ be the set of all points in the interval $$[0,8]$$ at which $$f$$ is not continuous. Then $$\sum_\limits{\text {aes }} a$$ is equal to __________.

JEE Main 2024 (Online) 6th April Evening Shift
14

Let $$\mathrm{a}>0$$ be a root of the equation $$2 x^2+x-2=0$$. If $$\lim _\limits{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^2\right)\right)}{(1-a x)^2}=\alpha+\beta \sqrt{17}$$, where $$\alpha, \beta \in Z$$, then $$\alpha+\beta$$ is equal to _________.

JEE Main 2024 (Online) 5th April Evening Shift
15

Let $$f$$ be a differentiable function in the interval $$(0, \infty)$$ such that $$f(1)=1$$ and $$\lim _\limits{t \rightarrow x} \frac{t^2 f(x)-x^2 f(t)}{t-x}=1$$ for each $$x>0$$. Then $$2 f(2)+3 f(3)$$ is equal to _________.

JEE Main 2024 (Online) 5th April Morning Shift
16

If $$\lim _\limits{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{\mathrm{m} \sqrt{5}}{\mathrm{n}(2 \mathrm{n})^{2 / 3}}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$, then $$8 \mathrm{~m}+12 \mathrm{n}$$ is equal to _______.

JEE Main 2024 (Online) 4th April Morning Shift
17
Let $\{x\}$ denote the fractional part of $x$ and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0$. If $\mathrm{L}$ and $\mathrm{R}$ respectively denotes the left hand limit and the right hand limit of $f(x)$ at $x=0$, then $\frac{32}{\pi^2}\left(\mathrm{~L}^2+\mathrm{R}^2\right)$ is equal to ___________.
JEE Main 2024 (Online) 1st February Morning Shift
18

If $$\lim _\limits{x \rightarrow 0} \frac{a x^2 e^x-b \log _e(1+x)+c x e^{-x}}{x^2 \sin x}=1$$, then $$16\left(a^2+b^2+c^2\right)$$ is equal to ________.

JEE Main 2024 (Online) 31st January Evening Shift
19

If the function

$$f(x)= \begin{cases}\frac{1}{|x|}, & |x| \geqslant 2 \\ \mathrm{a} x^2+2 \mathrm{~b}, & |x|<2\end{cases}$$

is differentiable on $$\mathbf{R}$$, then $$48(a+b)$$ is equal to __________.

JEE Main 2024 (Online) 30th January Morning Shift
20

Let $$f(x)=\sqrt{\lim _\limits{r \rightarrow x}\left\{\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right\}}$$ be differentiable in $$(-\infty, 0) \cup(0, \infty)$$ and $$f(1)=1$$. Then the value of ea, such that $$f(a)=0$$, is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
21

Let $$[x]$$ be the greatest integer $$\leq x$$. Then the number of points in the interval $$(-2,1)$$, where the function $$f(x)=|[x]|+\sqrt{x-[x]}$$ is discontinuous, is ___________.

JEE Main 2023 (Online) 12th April Morning Shift
22

Let $$f:( - 2,2) \to R$$ be defined by $$f(x) = \left\{ {\matrix{ {x[x],} & { - 2 < x < 0} \cr {(x - 1)[x],} & {0 \le x \le 2} \cr } } \right.$$ where $$[x]$$ denotes the greatest integer function. If m and n respectively are the number of points in $$( - 2,2)$$ at which $$y = |f(x)|$$ is not continuous and not differentiable, then $$m + n$$ is equal to ____________.

JEE Main 2023 (Online) 10th April Morning Shift
23

Let $$\mathrm{k}$$ and $$\mathrm{m}$$ be positive real numbers such that the function $$f(x)=\left\{\begin{array}{cc}3 x^{2}+k \sqrt{x+1}, & 0 < x < 1 \\ m x^{2}+k^{2}, & x \geq 1\end{array}\right.$$ is differentiable for all $$x > 0$$. Then $$\frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)}$$ is equal to ____________.

JEE Main 2023 (Online) 8th April Evening Shift
24

Let $$a \in \mathbb{Z}$$ and $$[\mathrm{t}]$$ be the greatest integer $$\leq \mathrm{t}$$. Then the number of points, where the function $$f(x)=[a+13 \sin x], x \in(0, \pi)$$ is not differentiable, is __________.

JEE Main 2023 (Online) 6th April Morning Shift
25

If $$[t]$$ denotes the greatest integer $$\leq t$$, then the number of points, at which the function $$f(x)=4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x+20]$$ is not differentiable in the open interval $$(-20,20)$$, is __________.

JEE Main 2022 (Online) 29th July Evening Shift
26

Let $$f:[0,1] \rightarrow \mathbf{R}$$ be a twice differentiable function in $$(0,1)$$ such that $$f(0)=3$$ and $$f(1)=5$$. If the line $$y=2 x+3$$ intersects the graph of $$f$$ at only two distinct points in $$(0,1)$$, then the least number of points $$x \in(0,1)$$, at which $$f^{\prime \prime}(x)=0$$, is ____________.

JEE Main 2022 (Online) 28th July Morning Shift
27

$$\lim\limits_{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}}$$ is equal to ___________.

JEE Main 2022 (Online) 28th July Morning Shift
28

Let $$f(x)=\left\{\begin{array}{l}\left|4 x^{2}-8 x+5\right|, \text { if } 8 x^{2}-6 x+1 \geqslant 0 \\ {\left[4 x^{2}-8 x+5\right], \text { if } 8 x^{2}-6 x+1<0,}\end{array}\right.$$ where $$[\alpha]$$ denotes the greatest integer less than or equal to $$\alpha$$. Then the number of points in $$\mathbf{R}$$ where $$f$$ is not differentiable is ___________.

JEE Main 2022 (Online) 25th July Morning Shift
29

Suppose $$\mathop {\lim }\limits_{x \to 0} {{F(x)} \over {{x^3}}}$$ exists and is equal to L, where

$$F(x) = \left| {\matrix{ {a + \sin {x \over 2}} & { - b\cos x} & 0 \cr { - b\cos x} & 0 & {a + \sin {x \over 2}} \cr 0 & {a + \sin {x \over 2}} & { - b\cos x} \cr } } \right|$$.

Then, $$-$$112 L is equal to ___________.

JEE Main 2022 (Online) 30th June Morning Shift
30

If $$\mathop {\lim }\limits_{x \to 1} {{\sin (3{x^2} - 4x + 1) - {x^2} + 1} \over {2{x^3} - 7{x^2} + ax + b}} = - 2$$, then the value of (a $$-$$ b) is equal to ___________.

JEE Main 2022 (Online) 28th June Evening Shift
31

Let [t] denote the greatest integer $$\le$$ t and {t} denote the fractional part of t. The integral value of $$\alpha$$ for which the left hand limit of the function

$$f(x) = [1 + x] + {{{\alpha ^{2[x] + {\{x\}}}} + [x] - 1} \over {2[x] + \{ x\} }}$$ at x = 0 is equal to $$\alpha - {4 \over 3}$$, is _____________.

JEE Main 2022 (Online) 27th June Evening Shift
32

Let $$f(x) = \left[ {2{x^2} + 1} \right]$$ and $$g(x) = \left\{ {\matrix{ {2x - 3,} & {x < 0} \cr {2x + 3,} & {x \ge 0} \cr } } \right.$$, where [t] is the greatest integer $$\le$$ t. Then, in the open interval ($$-$$1, 1), the number of points where fog is discontinuous is equal to ______________.

JEE Main 2022 (Online) 25th June Evening Shift
33

The number of points where the function

$$f(x) = \left\{ {\matrix{ {|2{x^2} - 3x - 7|} & {if} & {x \le - 1} \cr {[4{x^2} - 1]} & {if} & { - 1 < x < 1} \cr {|x + 1| + |x - 2|} & {if} & {x \ge 1} \cr } } \right.$$

[t] denotes the greatest integer $$\le$$ t, is discontinuous is _____________.

JEE Main 2022 (Online) 24th June Morning Shift
34
Let $$f(x) = {x^6} + 2{x^4} + {x^3} + 2x + 3$$, x $$\in$$ R. Then the natural number n for which $$\mathop {\lim }\limits_{x \to 1} {{{x^n}f(1) - f(x)} \over {x - 1}} = 44$$ is __________.
JEE Main 2021 (Online) 1st September Evening Shift
35
Let [t] denote the greatest integer $$\le$$ t. The number of points where the function $$f(x) = [x]\left| {{x^2} - 1} \right| + \sin \left( {{\pi \over {[x] + 3}}} \right) - [x + 1],x \in ( - 2,2)$$ is not continuous is _____________.
JEE Main 2021 (Online) 1st September Evening Shift
36
Let a, b $$\in$$ R, b $$\in$$ 0, Define a function

$$f(x) = \left\{ {\matrix{ {a\sin {\pi \over 2}(x - 1),} & {for\,x \le 0} \cr {{{\tan 2x - \sin 2x} \over {b{x^3}}},} & {for\,x > 0} \cr } } \right.$$.

If f is continuous at x = 0, then 10 $$-$$ ab is equal to ________________.
JEE Main 2021 (Online) 26th August Morning Shift
37
Let $$f:[0,3] \to R$$ be defined by $$f(x) = \min \{ x - [x],1 + [x] - x\} $$ where [x] is the greatest integer less than or equal to x. Let P denote the set containing all x $$\in$$ [0, 3] where f i discontinuous, and Q denote the set containing all x $$\in$$ (0, 3) where f is not differentiable. Then the sum of number of elements in P and Q is equal to ______________.
JEE Main 2021 (Online) 27th July Morning Shift
38
Consider the function


where P(x) is a polynomial such that P'' (x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to _____________.JEE Main 2021 (Online) 25th July Evening Shift Mathematics - Limits, Continuity and Differentiability Question 123 English
JEE Main 2021 (Online) 25th July Evening Shift
39
Let f : R $$\to$$ R be a function defined as $$f(x) = \left\{ {\matrix{ {3\left( {1 - {{|x|} \over 2}} \right)} & {if} & {|x|\, \le 2} \cr 0 & {if} & {|x|\, > 2} \cr } } \right.$$

Let g : R $$\to$$ R be given by $$g(x) = f(x + 2) - f(x - 2)$$. If n and m denote the number of points in R where g is not continuous and not differentiable, respectively, then n + m is equal to ______________.
JEE Main 2021 (Online) 22th July Evening Shift
40
Let a function g : [ 0, 4 ] $$\to$$ R be defined as

$$g(x) = \left\{ {\matrix{ {\mathop {\max }\limits_{0 \le t \le x} \{ {t^3} - 6{t^2} + 9t - 3),} & {0 \le x \le 3} \cr {4 - x,} & {3 < x \le 4} \cr } } \right.$$, then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is ____________.
JEE Main 2021 (Online) 20th July Evening Shift
41
If $$\mathop {\lim }\limits_{x \to 0} {{\alpha x{e^x} - \beta {{\log }_e}(1 + x) + \gamma {x^2}{e^{ - x}}} \over {x{{\sin }^2}x}} = 10,\alpha ,\beta ,\gamma \in R$$, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is _____________.
JEE Main 2021 (Online) 20th July Evening Shift
42
If the value of $$\mathop {\lim }\limits_{x \to 0} {(2 - \cos x\sqrt {\cos 2x} )^{\left( {{{x + 2} \over {{x^2}}}} \right)}}$$ is equal to ea, then a is equal to __________.
JEE Main 2021 (Online) 20th July Morning Shift
43
Let f : R $$ \to $$ R satisfy the equation f(x + y) = f(x) . f(y) for all x, y $$\in$$R and f(x) $$\ne$$ 0 for any x$$\in$$R. If the function f is differentiable at x = 0 and f'(0) = 3, then

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
JEE Main 2021 (Online) 18th March Evening Shift
44
If the function $$f(x) = {{\cos (\sin x) - \cos x} \over {{x^4}}}$$ is continuous at each point in its domain and $$f(0) = {1 \over k}$$, then k is ____________.
JEE Main 2021 (Online) 17th March Morning Shift
45
Let f : R $$ \to $$ R and g : R $$ \to $$ R be defined as

$$f(x) = \left\{ {\matrix{ {x + a,} & {x < 0} \cr {|x - 1|,} & {x \ge 0} \cr } } \right.$$ and

$$g(x) = \left\{ {\matrix{ {x + 1,} & {x < 0} \cr {{{(x - 1)}^2} + b,} & {x \ge 0} \cr } } \right.$$,

where a, b are non-negative real numbers. If (gof) (x) is continuous for all x $$\in$$ R, then a + b is equal to ____________.
JEE Main 2021 (Online) 16th March Evening Shift
46
If $$\mathop {\lim }\limits_{x \to 0} {{a{e^x} - b\cos x + c{e^{ - x}}} \over {x\sin x}} = 2$$, then a + b + c is equal to ____________.
JEE Main 2021 (Online) 16th March Morning Shift
47
A function f is defined on [$$-$$3, 3] as

$$f(x) = \left\{ {\matrix{ {\min \{ |x|,2 - {x^2}\} ,} & { - 2 \le x \le 2} \cr {[|x|],} & {2 < |x| \le 3} \cr } } \right.$$ where [x] denotes the greatest integer $$ \le $$ x. The number of points, where f is not differentiable in ($$-$$3, 3) is ___________.
JEE Main 2021 (Online) 25th February Evening Shift
48
If $$\mathop {\lim }\limits_{x \to 0} {{ax - ({e^{4x}} - 1)} \over {ax({e^{4x}} - 1)}}$$ exists and is equal to b, then the value of a $$-$$ 2b is __________.
JEE Main 2021 (Online) 25th February Evening Shift
49
The number of points, at which the function
f(x) = | 2x + 1 | $$-$$ 3| x + 2 | + | x2 + x $$-$$ 2 |, x$$\in$$R is not differentiable, is __________.
JEE Main 2021 (Online) 25th February Morning Shift
50
$$\mathop {\lim }\limits_{n \to \infty } \tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {1 + r + {r^2}}}} \right)} } \right\}$$ is equal to ______.
JEE Main 2021 (Online) 24th February Morning Shift
51
Let f : R $$ \to $$ R be defined as
$$f\left( x \right) = \left\{ {\matrix{ {{x^5}\sin \left( {{1 \over x}} \right) + 5{x^2},} & {x < 0} \cr {0,} & {x = 0} \cr {{x^5}\cos \left( {{1 \over x}} \right) + \lambda {x^2},} & {x > 0} \cr } } \right.$$

The value of $$\lambda $$ for which f ''(0) exists, is _______.
JEE Main 2020 (Online) 6th September Morning Slot
52
Let $$f(x) = x.\left[ {{x \over 2}} \right]$$, for -10< x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to _____.
JEE Main 2020 (Online) 5th September Morning Slot
53
Suppose a differentiable function f(x) satisfies the identity
f(x+y) = f(x) + f(y) + xy2 + x2y, for all real x and y.
$$\mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over x} = 1$$, then f'(3) is equal to ______.
JEE Main 2020 (Online) 4th September Morning Slot
54
If $$\mathop {\lim }\limits_{x \to 0} \left\{ {{1 \over {{x^8}}}\left( {1 - \cos {{{x^2}} \over 2} - \cos {{{x^2}} \over 4} + \cos {{{x^2}} \over 2}\cos {{{x^2}} \over 4}} \right)} \right\}$$ = 2-k

then the value of k is _______ .
JEE Main 2020 (Online) 3rd September Morning Slot
55
If $$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + {x^3} + ... + {x^n} - n} \over {x - 1}}$$ = 820,
(n $$ \in $$ N) then the value of n is equal to _______.
JEE Main 2020 (Online) 2nd September Morning Slot
56
If the function ƒ defined on $$\left( { - {1 \over 3},{1 \over 3}} \right)$$ by

f(x) = $$\left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + 3x} \over {1 - 2x}}} \right),} & {when\,x \ne 0} \cr {k,} & {when\,x = 0} \cr } } \right.$$

is continuous, then k is equal to_______.
JEE Main 2020 (Online) 7th January Evening Slot
57
Let S be the set of points where the function, ƒ(x) = |2-|x-3||, x $$ \in $$ R is not differentiable. Then $$\sum\limits_{x \in S} {f(f(x))} $$ is equal to_____.
JEE Main 2020 (Online) 7th January Morning Slot
58
$$\mathop {\lim }\limits_{x \to 2} {{{3^x} + {3^{3 - x}} - 12} \over {{3^{ - x/2}} - {3^{1 - x}}}}$$ is equal to_______.
JEE Main 2020 (Online) 7th January Morning Slot