Indefinite Integrals
Practice Questions
Numerical
1
If $\int\left(\frac{1}{x}+\frac{1}{x^3}\right)\left(\sqrt[23]{3 x^{-24}+x^{-26}}\right) \mathrm{d} x=-\frac{\alpha}{3(\alpha+1)}\left(3 x^\beta+x^\gamma\right)^{\frac{\alpha+1}{\alpha}}+C, x>0,(\alpha, \beta, \gamma \in \mathbf{Z})$, where C is the constant of integration, then $\alpha+\beta+\gamma$ is equal to ___________.
JEE Main 2025 (Online) 7th April Evening Shift
2

If $\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \mathrm{~d} x=\frac{1}{\mathrm{~m}}\left(\left(\sqrt{1+x^2}+x\right)^{\mathrm{n}}\left(\mathrm{n} \sqrt{1+x^2}-x\right)\right)+\mathrm{C}$ where C is the constant of integration and $\mathrm{m}, \mathrm{n} \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}$ is equal to _________ .

JEE Main 2025 (Online) 4th April Evening Shift
3

If $\int \frac{2 x^2+5 x+9}{\sqrt{x^2+x+1}} \mathrm{~d} x=x \sqrt{x^2+x+1}+\alpha \sqrt{x^2+x+1}+\beta \log _{\mathrm{e}}\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right|+\mathrm{C}$, where $C$ is the constant of integration, then $\alpha+2 \beta$ is equal to __________ .

JEE Main 2025 (Online) 24th January Evening Shift
4

If $$\int \frac{1}{\sqrt[5]{(x-1)^4(x+3)^6}} \mathrm{~d} x=\mathrm{A}\left(\frac{\alpha x-1}{\beta x+3}\right)^B+\mathrm{C}$$, where $$\mathrm{C}$$ is the constant of integration, then the value of $$\alpha+\beta+20 \mathrm{AB}$$ is _________.

JEE Main 2024 (Online) 8th April Evening Shift
5

If $$\int \operatorname{cosec}^5 x d x=\alpha \cot x \operatorname{cosec} x\left(\operatorname{cosec}^2 x+\frac{3}{2}\right)+\beta \log _x\left|\tan \frac{x}{2}\right|+\mathrm{C}$$ where $$\alpha, \beta \in \mathbb{R}$$ and $$\mathrm{C}$$ is the constant of integration, then the value of $$8(\alpha+\beta)$$ equals _________.

JEE Main 2024 (Online) 4th April Evening Shift
6
Let $f(x)=\int \frac{d x}{\left(3+4 x^{2}\right) \sqrt{4-3 x^{2}}},|x|<\frac{2}{\sqrt{3}}$. If $f(0)=0$

and $f(1)=\frac{1}{\alpha \beta} \tan ^{-1}\left(\frac{\alpha}{\beta}\right)$, $\alpha, \beta>0$, then $\alpha^{2}+\beta^{2}$ is equal to ____________.
JEE Main 2023 (Online) 15th April Morning Shift
7

Let $$I(x)=\int \sqrt{\frac{x+7}{x}} \mathrm{~d} x$$ and $$I(9)=12+7 \log _{e} 7$$. If $$I(1)=\alpha+7 \log _{e}(1+2 \sqrt{2})$$, then $$\alpha^{4}$$ is equal to _________.

JEE Main 2023 (Online) 12th April Morning Shift
8
If $\int \sqrt{\sec 2 x-1} d x=\alpha \log _e\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|+$ constant, then $\beta-\alpha$ is equal to ____________.
JEE Main 2023 (Online) 30th January Evening Shift
9
If $$\int {{{\sin x} \over {{{\sin }^3}x + {{\cos }^3}x}}dx = } $$

$$\alpha {\log _e}|1 + \tan x| + \beta {\log _e}|1 - \tan x + {\tan ^2}x| + \gamma {\tan ^{ - 1}}\left( {{{2\tan x - 1} \over {\sqrt 3 }}} \right) + C$$, when C is constant of integration, then the value of $$18(\alpha + \beta + {\gamma ^2})$$ is ______________.
JEE Main 2021 (Online) 31st August Evening Shift
10
If $$\int {{{2{e^x} + 3{e^{ - x}}} \over {4{e^x} + 7{e^{ - x}}}}dx = {1 \over {14}}(ux + v{{\log }_e}(4{e^x} + 7{e^{ - x}})) + C} $$, where C is a constant of integration, then u + v is equal to _____________.
JEE Main 2021 (Online) 27th August Evening Shift
11
If $$\int {{{dx} \over {{{({x^2} + x + 1)}^2}}} = a{{\tan }^{ - 1}}\left( {{{2x + 1} \over {\sqrt 3 }}} \right) + b\left( {{{2x + 1} \over {{x^2} + x + 1}}} \right) + C} $$, x > 0 where C is the constant of integration, then the value of $$9\left( {\sqrt 3 a + b} \right)$$ is equal to _____________.
JEE Main 2021 (Online) 27th August Morning Shift
12
If $$f(x) = \int {{{5{x^8} + 7{x^6}} \over {{{({x^2} + 1 + 2{x^7})}^2}}}dx,(x \ge 0),f(0) = 0} $$ and $$f(1) = {1 \over K}$$, then the value of K is
JEE Main 2021 (Online) 18th March Morning Shift
13
For real numbers $$\alpha$$, $$\beta$$, $$\gamma$$ and $$\delta $$, if
$$\int {{{({x^2} - 1) + {{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \over {({x^4} + 3{x^2} + 1){{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)}}dx} $$

$$ = \alpha {\log _e}\left( {{{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \right) + \beta {\tan ^{ - 1}}\left( {{{\gamma ({x^2} + 1)} \over x}} \right) + \delta {\tan ^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right) + C$$

where C is an arbitrary constant, then the value of 10($$\alpha$$ + $$\beta$$$$\gamma$$ + $$\delta$$) is equal to ______________.
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
1

$$ \text { Let } f(x)=\int x^3 \sqrt{3-x^2} d x \text {. If } 5 f(\sqrt{2})=-4 \text {, then } f(1) \text { is equal to } $$

JEE Main 2025 (Online) 3rd April Morning Shift
2
If $f(x)=\int \frac{1}{x^{1 / 4}\left(1+x^{1 / 4}\right)} \mathrm{d} x, f(0)=-6$, then $f(1)$ is equal to :
JEE Main 2025 (Online) 28th January Evening Shift
3

Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :

JEE Main 2025 (Online) 23rd January Evening Shift
4

Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
5

If $\int \mathrm{e}^x\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^2}}+\frac{\sin ^{-1} x}{\left(1-x^2\right)^{3 / 2}}+\frac{x}{1-x^2}\right) \mathrm{d} x=\mathrm{g}(x)+\mathrm{C}$, where C is the constant of integration, then $g\left(\frac{1}{2}\right)$ equals :

JEE Main 2025 (Online) 22nd January Evening Shift
6

Let $$\int \frac{2-\tan x}{3+\tan x} \mathrm{~d} x=\frac{1}{2}\left(\alpha x+\log _e|\beta \sin x+\gamma \cos x|\right)+C$$, where $$C$$ is the constant of integration. Then $$\alpha+\frac{\gamma}{\beta}$$ is equal to :

JEE Main 2024 (Online) 9th April Morning Shift
7

Let $$I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$$. If $$I(0)=3$$, then $$I\left(\frac{\pi}{12}\right)$$ is equal to

JEE Main 2024 (Online) 8th April Morning Shift
8

If $$\int \frac{1}{\mathrm{a}^2 \sin ^2 x+\mathrm{b}^2 \cos ^2 x} \mathrm{~d} x=\frac{1}{12} \tan ^{-1}(3 \tan x)+$$ constant, then the maximum value of $$\mathrm{a} \sin x+\mathrm{b} \cos x$$, is :

JEE Main 2024 (Online) 6th April Evening Shift
9

If $$\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^3 x \cos ^3 x \sin (x-\theta)}} d x=A \sqrt{\cos \theta \tan x-\sin \theta}+B \sqrt{\cos \theta-\sin \theta \cot x}+C$$, where $$C$$ is the integration constant, then $$A B$$ is equal to

JEE Main 2024 (Online) 29th January Evening Shift
10

For $$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$, if $$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$$, and $$\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$$ then $$y\left(\frac{\pi}{4}\right)$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
11

$$\text { The integral } \int \frac{\left(x^8-x^2\right) \mathrm{d} x}{\left(x^{12}+3 x^6+1\right) \tan ^{-1}\left(x^3+\frac{1}{x^3}\right)} \text { is equal to : }$$

JEE Main 2024 (Online) 27th January Evening Shift
12

For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x=\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}+C$$ , where $$e=\sum_\limits{n=0}^{\infty} \frac{1}{n !}$$ and $$\mathrm{C}$$ is constant of integration, then $$\alpha+2 \beta+3 \gamma-4 \delta$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
13

If $$I(x) = \int {{e^{{{\sin }^2}x}}(\cos x\sin 2x - \sin x)dx} $$ and $$I(0) = 1$$, then $$I\left( {{\pi \over 3}} \right)$$ is equal to :

JEE Main 2023 (Online) 10th April Morning Shift
14

The integral $$ \int\left[\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right] \ln \left(\frac{e x}{2}\right) d x $$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
15

Let $$I(x)=\int \frac{(x+1)}{x\left(1+x e^{x}\right)^{2}} d x, x > 0$$. If $$\lim_\limits{x \rightarrow \infty} I(x)=0$$, then $$I(1)$$ is equal to :

JEE Main 2023 (Online) 8th April Morning Shift
16

Let $$I(x)=\int \frac{x^{2}\left(x \sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$$. If $$I(0)=0$$, then $$I\left(\frac{\pi}{4}\right)$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
17

Let $$f(x) = \int {{{2x} \over {({x^2} + 1)({x^2} + 3)}}dx} $$. If $$f(3) = {1 \over 2}({\log _e}5 - {\log _e}6)$$, then $$f(4)$$ is equal to

JEE Main 2023 (Online) 25th January Morning Shift
18

For $$I(x)=\int \frac{\sec ^{2} x-2022}{\sin ^{2022} x} d x$$, if $$I\left(\frac{\pi}{4}\right)=2^{1011}$$, then

JEE Main 2022 (Online) 29th July Evening Shift
19

$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$

JEE Main 2022 (Online) 26th July Evening Shift
20
If $$\int {{{({x^2} + 1){e^x}} \over {{{(x + 1)}^2}}}dx = f(x){e^x} + C} $$, where C is a constant, then $${{{d^3}f} \over {d{x^3}}}$$ at x = 1 is equal to :
JEE Main 2022 (Online) 27th June Morning Shift
21

If $$\int {{1 \over x}\sqrt {{{1 - x} \over {1 + x}}} dx = g(x) + c} $$, $$g(1) = 0$$, then $$g\left( {{1 \over 2}} \right)$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
22
The integral $$\int {{1 \over {\root 4 \of {{{(x - 1)}^3}{{(x + 2)}^5}} }}} \,dx$$ is equal to : (where C is a constant of integration)
JEE Main 2021 (Online) 31st August Morning Shift
23
The integral $$\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$$ is equal to (where c is a constant of integration)
JEE Main 2021 (Online) 18th March Morning Shift
24
The integral $$\int {{{{e^{3{{\log }_e}2x}} + 5{e^{2{{\log }_e}2x}}} \over {{e^{4{{\log }_e}x}} + 5{e^{3{{\log }_e}x}} - 7{e^{2{{\log }_e}x}}}}} dx$$, x > 0, is equal to : (where c is a constant of integration)
JEE Main 2021 (Online) 25th February Evening Shift
25
The value of the integral
$$\int {{{\sin \theta .\sin 2\theta ({{\sin }^6}\theta + {{\sin }^4}\theta + {{\sin }^2}\theta )\sqrt {2{{\sin }^4}\theta + 3{{\sin }^2}\theta + 6} } \over {1 - \cos 2\theta }}} \,d\theta $$ is :
JEE Main 2021 (Online) 25th February Morning Shift
26
If $$\int {{{\cos x - \sin x} \over {\sqrt {8 - \sin 2x} }}} dx = a{\sin ^{ - 1}}\left( {{{\sin x + \cos x} \over b}} \right) + c$$, where c is a constant of integration, then the ordered pair (a, b) is equal to :
JEE Main 2021 (Online) 24th February Morning Shift
27
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
JEE Main 2020 (Online) 5th September Evening Slot
28
If
$$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $$ = $$g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$$

where c is a constant of integration, then g(0) is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
29
The integral $$\int {{{\left( {{x \over {x\sin x + \cos x}}} \right)}^2}dx} $$ is equal to
(where C is a constant of integration):
JEE Main 2020 (Online) 4th September Morning Slot
30
Let $$f\left( x \right) = \int {{{\sqrt x } \over {{{\left( {1 + x} \right)}^2}}}dx\left( {x \ge 0} \right)} $$. Then f(3) – f(1) is eqaul to :
JEE Main 2020 (Online) 4th September Morning Slot
31
If $$\int {{{\sin }^{ - 1}}\left( {\sqrt {{x \over {1 + x}}} } \right)} dx$$ = A(x)$${\tan ^{ - 1}}\left( {\sqrt x } \right)$$ + B(x) + C,
where C is a constant of integration, then the ordered pair (A(x), B(x)) can be :
JEE Main 2020 (Online) 3rd September Evening Slot
32
If $$\int {{{d\theta } \over {{{\cos }^2}\theta \left( {\tan 2\theta + \sec 2\theta } \right)}}} = \lambda \tan \theta + 2{\log _e}\left| {f\left( \theta \right)} \right| + C$$

where C is a constant of integration, then the ordered pair ($$\lambda $$, ƒ($$\theta $$)) is equal to :
JEE Main 2020 (Online) 9th January Evening Slot
33
The integral $$\int {{{dx} \over {{{(x + 4)}^{{8 \over 7}}}{{(x - 3)}^{{6 \over 7}}}}}} $$ is equal to :
(where C is a constant of integration)
JEE Main 2020 (Online) 9th January Morning Slot
34
If ƒ'(x) = tan–1(secx + tanx), $$ - {\pi \over 2} < x < {\pi \over 2}$$,
and ƒ(0) = 0, then ƒ(1) is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
35
If $$\int {{{\cos xdx} \over {{{\sin }^3}x{{\left( {1 + {{\sin }^6}x} \right)}^{2/3}}}}} = f\left( x \right){\left( {1 + {{\sin }^6}x} \right)^{1/\lambda }} + c$$

where c is a constant of integration, then $$\lambda f\left( {{\pi \over 3}} \right)$$ is equal to
JEE Main 2020 (Online) 8th January Morning Slot
36
Let $$a \in \left( {0,{\pi \over 2}} \right)$$ be fixed. If the integral

$$\int {{{\tan x + \tan \alpha } \over {\tan x - \tan \alpha }}} dx$$ = A(x) cos 2$$\alpha $$ + B(x) sin 2$$\alpha $$ + C, where C is a

constant of integration, then the functions A(x) and B(x) are respectively :
JEE Main 2019 (Online) 12th April Evening Slot
37
The integral $$\int {{{2{x^3} - 1} \over {{x^4} + x}}} dx$$ is equal to :
(Here C is a constant of integration)
JEE Main 2019 (Online) 12th April Morning Slot
38
If $$\int {{x^5}} {e^{ - {x^2}}}dx = g\left( x \right){e^{ - {x^2}}} + c$$, where c is a constant of integration, then $$g$$(–1) is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
39
If $$\int {{{dx} \over {{{\left( {{x^2} - 2x + 10} \right)}^2}}}} = A\left( {{{\tan }^{ - 1}}\left( {{{x - 1} \over 3}} \right) + {{f\left( x \right)} \over {{x^2} - 2x + 10}}} \right) + C$$

where C is a constant of integration then :
JEE Main 2019 (Online) 10th April Morning Slot
40
$$\int {{e^{\sec x}}}$$ $$(\sec x\tan xf(x) + \sec x\tan x + se{x^2}x)dx$$
= esecxf(x) + C then a possible choice of f(x) is :-
JEE Main 2019 (Online) 9th April Evening Slot
41
The integral $$\int {{\rm{se}}{{\rm{c}}^{{\rm{2/ 3}}}}\,{\rm{x }}\,{\rm{cose}}{{\rm{c}}^{{\rm{4 / 3}}}}{\rm{x \,dx}}} $$ is equal to (Hence C is a constant of integration)
JEE Main 2019 (Online) 9th April Morning Slot
42
If $$\int {{{dx} \over {{x^3}{{(1 + {x^6})}^{2/3}}}} = xf(x){{(1 + {x^6})}^{{1 \over 3}}} + C} $$
where C is a constant of integration, then the function ƒ(x) is equal to
JEE Main 2019 (Online) 8th April Evening Slot
43
$$\int {{{\sin {{5x} \over 2}} \over {\sin {x \over 2}}}dx} $$ is equal to
(where c is a constant of integration)
JEE Main 2019 (Online) 8th April Morning Slot
44
The integral $$\int {{{3{x^{13}} + 2{x^{11}}} \over {{{\left( {2{x^4} + 3{x^2} + 1} \right)}^4}}}} \,dx$$ is equal to : (where C is a constant of integration)
JEE Main 2019 (Online) 12th January Evening Slot
45
The integral $$\int \, $$cos(loge x) dx is equal to : (where C is a constant of integration)
JEE Main 2019 (Online) 12th January Morning Slot
46
If   $$\int {{{x + 1} \over {\sqrt {2x - 1} }}} \,dx$$ = f(x) $$\sqrt {2x - 1} $$ + C, where C is a constant of integration, then f(x) is equal to :
JEE Main 2019 (Online) 11th January Evening Slot
47
If  $$\int {{{\sqrt {1 - {x^2}} } \over {{x^4}}}} $$ dx = A(x)$${\left( {\sqrt {1 - {x^2}} } \right)^m}$$ + C, for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))m equals :
JEE Main 2019 (Online) 11th January Morning Slot
48
If  $$\int \, $$x5.e$$-$$4x3 dx = $${1 \over {48}}$$e$$-$$4x3 f(x) + C, where C is a constant of inegration, then f(x) is equal to -
JEE Main 2019 (Online) 10th January Evening Slot
49
Let n $$ \ge $$ 2 be a natural number and $$0 < \theta < {\pi \over 2}.$$ Then $$\int {{{{{\left( {{{\sin }^n}\theta - \sin \theta } \right)}^{1/n}}\cos \theta } \over {{{\sin }^{n + 1}}\theta }}} \,d\theta $$ is equal to - (where C is a constant of integration)
JEE Main 2019 (Online) 10th January Morning Slot
50
If   $$f\left( x \right) = \int {{{5{x^8} + 7{x^6}} \over {{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}} \,dx,\,\left( {x \ge 0} \right),$$

$$f\left( 0 \right) = 0,$$    then the value of $$f(1)$$ is :
JEE Main 2019 (Online) 9th January Evening Slot
51
For x2 $$ \ne $$ n$$\pi $$ + 1, n $$ \in $$ N (the set of natural numbers), the integral

$$\int {x\sqrt {{{2\sin ({x^2} - 1) - \sin 2({x^2} - 1)} \over {2\sin ({x^2} - 1) + \sin 2({x^2} - 1)}}} dx} $$ is equal to :

(where c is a constant of integration)
JEE Main 2019 (Online) 9th January Morning Slot
52
If $$\int {{{\tan x} \over {1 + \tan x + {{\tan }^2}x}}dx = x - {K \over {\sqrt A }}{{\tan }^{ - 1}}} $$ $$\left( {{{K\,\tan x + 1} \over {\sqrt A }}} \right) + C,(C\,\,$$ is a constant of integration) then the ordered pair (K, A) is equal to :
JEE Main 2018 (Online) 16th April Morning Slot
53
The integral

$$\int {{{{{\sin }^2}x{{\cos }^2}x} \over {{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin }^2}x + {{\sin }^3}x{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}} dx$$

is equal to
JEE Main 2018 (Offline)
54
If    $$\int {{{2x + 5} \over {\sqrt {7 - 6x - {x^2}} }}} \,\,dx = A\sqrt {7 - 6x - {x^2}} + B{\sin ^{ - 1}}\left( {{{x + 3} \over 4}} \right) + C$$
(where C is a constant of integration), then the ordered pair (A, B) is equal to :
JEE Main 2018 (Online) 15th April Evening Slot
55
If $$f\left( {{{x - 4} \over {x + 2}}} \right) = 2x + 1,$$ (x $$ \in $$ R $$-$${1, $$-$$ 2}), then $$\int f \left( x \right)dx$$ is equal to :
(where C is a constant of integration)
JEE Main 2018 (Online) 15th April Morning Slot
56
If $$\,\,\,$$ f$$\left( {{{3x - 4} \over {3x + 4}}} \right)$$ = x + 2, x $$ \ne $$ $$-$$ $${4 \over 3}$$, and

$$\int {} $$f(x) dx = A log$$\left| {} \right.$$1 $$-$$ x $$\left| {} \right.$$ + Bx + C,

then the ordered pair (A, B) is equal to :

(where C is a constant of integration)
JEE Main 2017 (Online) 9th April Morning Slot
57
The integral

$$\int {\sqrt {1 + 2\cot x(\cos ecx + \cot x)\,} \,\,dx} $$

$$\left( {0 < x < {\pi \over 2}} \right)$$ is equal to :

(where C is a constant of integration)
JEE Main 2017 (Online) 8th April Morning Slot
58
Let $${I_n} = \int {{{\tan }^n}x\,dx} ,\,\left( {n > 1} \right).$$

If $${I_4} + {I_6}$$ = $$a{\tan ^5}x + b{x^5} + C$$, where C is a constant of integration,

then the ordered pair $$\left( {a,b} \right)$$ is equal to
JEE Main 2017 (Offline)
59
The integral $$\int {{{dx} \over {\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} $$ is equal to :

(where C is a constant of integration.)
JEE Main 2016 (Online) 10th April Morning Slot
60
If   $$\int {{{dx} \over {{{\cos }^3}x\sqrt {2\sin 2x} }}} = {\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k,$$

where k is a constant of integration, then A + B +C equals :
JEE Main 2016 (Online) 9th April Morning Slot
61
The integral $$\int {{{2{x^{12}} + 5{x^9}} \over {{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx$$ is equal to :
JEE Main 2016 (Offline)
62
The integral $$\int {{{dx} \over {{x^2}{{\left( {{x^4} + 1} \right)}^{3/4}}}}} $$ equals :
JEE Main 2015 (Offline)
63
The integral $$\int {\left( {1 + x - {1 \over x}} \right){e^{x + {1 \over x}}}dx} $$ is equal to
JEE Main 2014 (Offline)
64
If $$\int {f\left( x \right)dx = \psi \left( x \right),} $$ then $$\int {{x^5}f\left( {{x^3}} \right)dx} $$ is equal to
JEE Main 2013 (Offline)
65
If the $$\int {{{5\tan x} \over {\tan x - 2}}dx = x + a\,\ln \,\left| {\sin x - 2\cos x} \right| + k,} $$ then $$a$$ is
equal to :
AIEEE 2012
66
The value of $$\sqrt 2 \int {{{\sin xdx} \over {\sin \left( {x - {\pi \over 4}} \right)}}} $$ is
AIEEE 2008
67
$$\int {{{dx} \over {\cos x + \sqrt 3 \sin x}}} $$ equals
AIEEE 2007
68
$$\int {{{\left\{ {{{\left( {\log x - 1} \right)} \over {1 + {{\left( {\log x} \right)}^2}}}} \right\}}^2}\,\,dx} $$ is equal to
AIEEE 2005
69
$$\int {{{dx} \over {\cos x - \sin x}}} $$ is equal to
AIEEE 2004
70
If $$\int {{{\sin x} \over {\sin \left( {x - \alpha } \right)}}dx = Ax + B\log \sin \left( {x - \alpha } \right), + C,} $$ then value of
$$(A, B)$$ is
AIEEE 2004