Definite Integration
Practice Questions
MCQ (Single Correct Answer)
1

The integral $\int\limits_{-1}^{\frac{3}{2}} \left(| \pi^2 x \sin(\pi x) \right|) dx$ is equal to:

JEE Main 2025 (Online) 8th April Evening Shift
2

Let f(x) be a positive function and $I_{1} = \int\limits_{-\frac{1}{2}}^{1} 2x \, f(2x(1-2x)) \, dx$ and $I_{2} = \int\limits_{-1}^{2} f(x(1-x)) \, dx$. Then the value of $\frac{I_{2}}{I_{1}}$ is equal to ________

JEE Main 2025 (Online) 8th April Evening Shift
3

The integral $\int_0^\pi \frac{(x+3) \sin x}{1+3 \cos ^2 x} d x$ is equal to

JEE Main 2025 (Online) 7th April Morning Shift
4

Let $f(x)+2 f\left(\frac{1}{x}\right)=x^2+5$ and $2 g(x)-3 g\left(\frac{1}{2}\right)=x, x>0$. If $\alpha=\int_1^2 f(x) \mathrm{d} x$, and $\beta=\int_1^2 g(x) \mathrm{d} x$, then the value of $9 \alpha+\beta$ is :

JEE Main 2025 (Online) 4th April Evening Shift
5

The value of $\int_\limits{-1}^1 \frac{(1+\sqrt{|x|-x}) e^x+(\sqrt{|x|-x}) e^{-x}}{e^x+e^{-x}} d x$ is equal to

JEE Main 2025 (Online) 4th April Morning Shift
6
The integral $\int_0^\pi \frac{8 x d x}{4 \cos ^2 x+\sin ^2 x}$ is equal to
JEE Main 2025 (Online) 3rd April Evening Shift
7

Let the domain of the function $f(x)=\log _2 \log _4 \log _6\left(3+4 x-x^2\right)$ be $(a, b)$. If $\int_0^{b-a}\left[x^2\right] d x=p-\sqrt{q}-\sqrt{r}, p, q, r \in \mathbb{N}, \operatorname{gcd}(p, q, r)=1$, where $[\cdot]$ is the greatest integer function, then $p+q+r$ is equal to

JEE Main 2025 (Online) 3rd April Morning Shift
8
Let $f:[1, \infty) \rightarrow[2, \infty)$ be a differentiable function. If $10 \int_1^1 f(\mathrm{t}) \mathrm{dt}=5 x f(x)-x^5-9$ for all $x \geqslant 1$, then the value of $f(3)$ is :
JEE Main 2025 (Online) 2nd April Evening Shift
9
Let $(a, b)$ be the point of intersection of the curve $x^2=2 y$ and the straight line $y-2 x-6=0$ in the second quadrant. Then the integral $\mathrm{I}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{9 x^2}{1+5^x} \mathrm{~d} x$ is equal to :
JEE Main 2025 (Online) 2nd April Evening Shift
10
$4 \int_0^1\left(\frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}}\right) d x-3 \log _e(\sqrt{3})$ is equal to :
JEE Main 2025 (Online) 2nd April Evening Shift
11
Let $f(x)=\int\limits_0^x \mathrm{t}\left(\mathrm{t}^2-9 \mathrm{t}+20\right) \mathrm{dt}, 1 \leq x \leq 5$. If the range of $f$ is $[\alpha, \beta]$, then $4(\alpha+\beta)$ equals :
JEE Main 2025 (Online) 29th January Evening Shift
12

The integral $80 \int\limits_0^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16 \sin 2 \theta}\right) d \theta$ is equal to :

JEE Main 2025 (Online) 29th January Morning Shift
13

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a twice differentiable function such that $f(2)=1$. If $\mathrm{F}(\mathrm{x})=\mathrm{x} f(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$, $\int\limits_0^2 x F^{\prime}(x) d x=6$ and $\int\limits_0^2 x^2 F^{\prime \prime}(x) d x=40$, then $F^{\prime}(2)+\int\limits_0^2 F(x) d x$ is equal to :

JEE Main 2025 (Online) 28th January Evening Shift
14

Let $f$ be a real valued continuous function defined on the positive real axis such that $g(x)=\int\limits_0^x t f(t) d t$. If $g\left(x^3\right)=x^6+x^7$, then value of $\sum\limits_{r=1}^{15} f\left(r^3\right)$ is :

JEE Main 2025 (Online) 28th January Evening Shift
15

If $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{96 x^2 \cos ^2 x}{\left(1+e^x\right)} \mathrm{d} x=\pi\left(\alpha \pi^2+\beta\right), \alpha, \beta \in \mathbb{Z}$, then $(\alpha+\beta)^2$ equals

JEE Main 2025 (Online) 28th January Morning Shift
16

If $I(m, n)=\int_0^1 x^{m-1}(1-x)^{n-1} d x, m, n>0$, then $I(9,14)+I(10,13)$ is

JEE Main 2025 (Online) 24th January Morning Shift
17

If $\mathrm{I}=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} \mathrm{~d} x$, then $\int_0^{2I} \frac{x \sin x \cos x}{\sin ^4 x+\cos ^4 x} \mathrm{~d} x$ equals :

JEE Main 2025 (Online) 23rd January Evening Shift
18

The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is

JEE Main 2025 (Online) 23rd January Morning Shift
19

Let for $f(x)=7 \tan ^8 x+7 \tan ^6 x-3 \tan ^4 x-3 \tan ^2 x, \quad \mathrm{I}_1=\int_0^{\pi / 4} f(x) \mathrm{d} x$ and $\mathrm{I}_2=\int_0^{\pi / 4} x f(x) \mathrm{d} x$. Then $7 \mathrm{I}_1+12 \mathrm{I}_2$ is equal to :

JEE Main 2025 (Online) 22nd January Morning Shift
20

The integral $$\int_\limits{1 / 4}^{3 / 4} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
21

$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
22

The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is

JEE Main 2024 (Online) 9th April Evening Shift
23

Let $$\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$$. Then $$\mathrm{e}^\alpha$$ and $$\mathrm{e}^{-\alpha}$$ are the roots of the equation :

JEE Main 2024 (Online) 8th April Evening Shift
24

The value of $$k \in \mathbb{N}$$ for which the integral $$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}$$, satisfies $$147 I_{20}=148 I_{21}$$ is

JEE Main 2024 (Online) 8th April Morning Shift
25

$$\int_\limits0^{\pi / 4} \frac{\cos ^2 x \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \text { is equal to }$$

JEE Main 2024 (Online) 6th April Morning Shift
26

Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If $$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x=\mathrm{a} \times \beta(\mathrm{b}, \mathrm{c})$$, then $$100(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ equals _________.

JEE Main 2024 (Online) 5th April Evening Shift
27

The integral $$\int_\limits0^{\pi / 4} \frac{136 \sin x}{3 \sin x+5 \cos x} \mathrm{~d} x$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
28

The value of $$\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y$$ is :

JEE Main 2024 (Online) 5th April Morning Shift
29

Let $$f(x)=\int_0^x\left(t+\sin \left(1-e^t\right)\right) d t, x \in \mathbb{R}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^3}$$ is equal to

JEE Main 2024 (Online) 4th April Evening Shift
30

If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is

JEE Main 2024 (Online) 4th April Evening Shift
31

$$\text { Let } f(x)=\left\{\begin{array}{lr} -2, & -2 \leq x \leq 0 \\ x-2, & 0< x \leq 2 \end{array} \text { and } \mathrm{h}(x)=f(|x|)+|f(x)| \text {. Then } \int_\limits{-2}^2 \mathrm{~h}(x) \mathrm{d} x\right. \text { is equal to: }$$

JEE Main 2024 (Online) 4th April Morning Shift
32
If $\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}$, where $\mathrm{a}$ and $\mathrm{b}$ are rational numbers, then $9 \mathrm{a}+8 \mathrm{b}$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
33
The value of $\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
34
The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$ equals :
JEE Main 2024 (Online) 1st February Morning Shift
35

Let $$f, g:(0, \infty) \rightarrow \mathbb{R}$$ be two functions defined by $$f(x)=\int\limits_{-x}^x\left(|t|-t^2\right) e^{-t^2} d t$$ and $$g(x)=\int\limits_0^{x^2} t^{1 / 2} e^{-t} d t$$. Then, the value of $$9\left(f\left(\sqrt{\log _e 9}\right)+g\left(\sqrt{\log _e 9}\right)\right)$$ is equal to :

JEE Main 2024 (Online) 31st January Evening Shift
36

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{x}{\left(1+x^4\right)^{1 / 4}}$$, and $$g(x)=f(f(f(f(x))))$$. Then, $$18 \int_0^{\sqrt{2 \sqrt{5}}} x^2 g(x) d x$$ is equal to

JEE Main 2024 (Online) 30th January Evening Shift
37

Let $$y=f(x)$$ be a thrice differentiable function in $$(-5,5)$$. Let the tangents to the curve $$y=f(x)$$ at $$(1, f(1))$$ and $$(3, f(3))$$ make angles $$\pi / 6$$ and $$\pi / 4$$, respectively with positive $$x$$-axis. If $$27 \int_\limits1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3}$$ where $$\alpha, \beta$$ are integers, then the value of $$\alpha+\beta$$ equals

JEE Main 2024 (Online) 30th January Evening Shift
38

Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$$ be differentiable on $$\mathbb{R}$$. Then, the value of $$\int_\limits{-2}^2 f(x) d x$$ equals

JEE Main 2024 (Online) 30th January Evening Shift
39

Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as $$f(x)=a e^{2 x}+b e^x+c x$$. If $$f(0)=-1, f^{\prime}\left(\log _e 2\right)=21$$ and $$\int_0^{\log _e 4}(f(x)-c x) d x=\frac{39}{2}$$, then the value of $$|a+b+c|$$ equals

JEE Main 2024 (Online) 30th January Evening Shift
40

The value of $$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$ is :

JEE Main 2024 (Online) 30th January Morning Shift
41

Let $$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$ be a differentiable function such that $$f(0)=\frac{1}{2}$$. If the $$\lim _\limits{x \rightarrow 0} \frac{x \int_0^x f(\mathrm{t}) \mathrm{dt}}{\mathrm{e}^{x^2}-1}=\alpha$$, then $$8 \alpha^2$$ is equal to :

JEE Main 2024 (Online) 30th January Morning Shift
42

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
43

If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is

JEE Main 2024 (Online) 29th January Morning Shift
44

For $$0 < \mathrm{a} < 1$$, the value of the integral $$\int_\limits0^\pi \frac{\mathrm{d} x}{1-2 \mathrm{a} \cos x+\mathrm{a}^2}$$ is :

JEE Main 2024 (Online) 27th January Evening Shift
45
If $\int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational numbers, then $2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}$ is equal to :
JEE Main 2024 (Online) 27th January Morning Shift
46
If $(a, b)$ be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $\mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x \sin \left(4 x-x^2\right) \mathrm{d} x, \mathrm{I}_2=\int\limits_{\mathrm{a}}^{\mathrm{b}} \sin \left(4 x-x^2\right) \mathrm{d} x$, then $36 \frac{\mathrm{I}_1}{\mathrm{I}_2}$ is equal to :
JEE Main 2024 (Online) 27th January Morning Shift
47
If $\int\limits_{0}^{1} \frac{1}{\left(5+2 x-2 x^{2}\right)\left(1+e^{(2-4 x)}\right)} d x=\frac{1}{\alpha} \log _{e}\left(\frac{\alpha+1}{\beta}\right), \alpha, \beta>0$, then $\alpha^{4}-\beta^{4}$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
48

The value of $${{{e^{ - {\pi \over 4}}} + \int\limits_0^{{\pi \over 4}} {{e^{ - x}}{{\tan }^{50}}xdx} } \over {\int\limits_0^{{\pi \over 4}} {{e^{ - x}}({{\tan }^{49}}x + {{\tan }^{51}}x)dx} }}$$ is

JEE Main 2023 (Online) 13th April Evening Shift
49

Among

(S1): $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots \ldots+2 n)=1$$

(S2) : $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots \ldots+n^{15}\right)=\frac{1}{16}$$

JEE Main 2023 (Online) 13th April Morning Shift
50

$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$

JEE Main 2023 (Online) 13th April Morning Shift
51

If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :

JEE Main 2023 (Online) 11th April Evening Shift
52

Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as

$$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} & x \in[0,1) \\ e^{\left[x-\log _{e} x\right]}, & x \in[1,2]\end{cases}$$

where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_\limits{0}^{2} x f(x) d x$$ is :

JEE Main 2023 (Online) 11th April Evening Shift
53

The value of the integral $$\int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x$$ is equal to :

JEE Main 2023 (Online) 11th April Morning Shift
54

Let $$f$$ be a continuous function satisfying $$\int_\limits{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t > 0$$. Then $$f\left(\frac{\pi^{2}}{4}\right)$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
55

Let $$f(x)$$ be a function satisfying $$f(x)+f(\pi-x)=\pi^{2}, \forall x \in \mathbb{R}$$. Then $$\int_\limits{0}^{\pi} f(x) \sin x d x$$ is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
56

$$\lim _\limits{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots . .\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}$$ is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
57

Let $$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x > 0$$. Then $$18 \int_\limits{1}^{2} f(x) d x$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
58

The value of the integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx} $$ is :

JEE Main 2023 (Online) 1st February Evening Shift
59

$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$ is equal to

JEE Main 2023 (Online) 1st February Morning Shift
60
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
61
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$,

then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
62

Let $$\alpha \in (0,1)$$ and $$\beta = {\log _e}(1 - \alpha )$$. Let $${P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}} \over n},x \in (0,1)$$. Then the integral $$\int\limits_0^\alpha {{{{t^{50}}} \over {1 - t}}dt} $$ is equal to

JEE Main 2023 (Online) 31st January Morning Shift
63

The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :

JEE Main 2023 (Online) 31st January Morning Shift
64
$\lim\limits_{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^2+\left(2+\frac{2}{n}\right)^2+\ldots+\left(3-\frac{1}{n}\right)^2\right\}$ is equal to :
JEE Main 2023 (Online) 30th January Evening Shift
65

If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :

JEE Main 2023 (Online) 30th January Morning Shift
66

The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt} $$ is

JEE Main 2023 (Online) 29th January Evening Shift
67

The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :

JEE Main 2023 (Online) 29th January Evening Shift
68

Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which

satisfies $$f(x) = x + \int\limits_0^{\pi /2} {\sin (x + y)f(y)dy} $$. then $$(a+b)$$ is equal to

JEE Main 2023 (Online) 29th January Morning Shift
69

The integral $$16\int\limits_1^2 {{{dx} \over {{x^3}{{\left( {{x^2} + 2} \right)}^2}}}} $$ is equal to

JEE Main 2023 (Online) 25th January Evening Shift
70

The minimum value of the function $$f(x) = \int\limits_0^2 {{e^{|x - t|}}dt} $$ is :

JEE Main 2023 (Online) 25th January Morning Shift
71

$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$ is equal to :

JEE Main 2023 (Online) 24th January Evening Shift
72

If $$[t]$$ denotes the greatest integer $$\leq t$$, then the value of $$\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] \mathrm{d} x$$ is :

JEE Main 2022 (Online) 29th July Evening Shift
73

The integral $$\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} \mathrm{~d} x$$ is equal to :

JEE Main 2022 (Online) 29th July Morning Shift
74

If $$f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$$, then $$f\left(\mathrm{e}^{3}\right)+f\left(\mathrm{e}^{-3}\right)$$ is equal to :

JEE Main 2022 (Online) 29th July Morning Shift
75

Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then :

JEE Main 2022 (Online) 28th July Evening Shift
76

The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x^{2}-x+1\right) \mathrm{e}^{x}$$, $$x \in \mathbf{R}$$, is :

JEE Main 2022 (Online) 28th July Morning Shift
77

Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.

Consider

$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$

$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$

Then,

JEE Main 2022 (Online) 27th July Evening Shift
78

$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :

JEE Main 2022 (Online) 27th July Evening Shift
79

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as

$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to

JEE Main 2022 (Online) 27th July Morning Shift
80

Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then

JEE Main 2022 (Online) 27th July Morning Shift
81

Let a function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as :

$$f(x)= \begin{cases}\int\limits_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x & , x \leq 4\end{cases}$$

where $$\mathrm{b} \in \mathbb{R}$$. If $$f$$ is continuous at $$x=4$$, then which of the following statements is NOT true?

JEE Main 2022 (Online) 27th July Morning Shift
82

$$ \int\limits_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \text { is equal to } $$

JEE Main 2022 (Online) 26th July Evening Shift
83

If $$a = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {{{2n} \over {{n^2} + {k^2}}}} $$ and $$f(x) = \sqrt {{{1 - \cos x} \over {1 + \cos x}}} $$, $$x \in (0,1)$$, then :

JEE Main 2022 (Online) 26th July Morning Shift
84

$$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {3 \over {{2^n}}}} }} + \,\,...\,\, + \,\,{1 \over {\sqrt {1 - {{{2^n} - 1} \over {{2^n}}}} }}} \right)$$ is equal to

JEE Main 2022 (Online) 25th July Evening Shift
85

Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to

JEE Main 2022 (Online) 25th July Evening Shift
86

For any real number $$x$$, let $$[x]$$ denote the largest integer less than equal to $$x$$. Let $$f$$ be a real valued function defined on the interval $$[-10,10]$$ by $$f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$$ Then the value of $$\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$$ is :

JEE Main 2022 (Online) 25th July Morning Shift
87

$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{r \over {2{r^2} - 7rn + 6{n^2}}}} $$ is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
88

Let f be a real valued continuous function on [0, 1] and $$f(x) = x + \int\limits_0^1 {(x - t)f(t)dt} $$.

Then, which of the following points (x, y) lies on the curve y = f(x) ?

JEE Main 2022 (Online) 29th June Evening Shift
89

If $$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \right)dy + \int\limits_1^2 {\left( {2 - {{{y^2}} \over 2}} \right)dy + I} } } $$, then I equals

JEE Main 2022 (Online) 29th June Evening Shift
90

Let $$f:R \to R$$ be a function defined by :

$$f(x) = \left\{ {\matrix{ {\max \,\{ {t^3} - 3t\} \,t \le x} & ; & {x \le 2} \cr {{x^2} + 2x - 6} & ; & {2 < x < 3} \cr {[x - 3] + 9} & ; & {3 \le x \le 5} \cr {2x + 1} & ; & {x > 5} \cr } } \right.$$

where [t] is the greatest integer less than or equal to t. Let m be the number of points where f is not differentiable and $$I = \int\limits_{ - 2}^2 {f(x)\,dx} $$. Then the ordered pair (m, I) is equal to :

JEE Main 2022 (Online) 29th June Morning Shift
91

$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$,

where [t] denotes greatest integer less than or equal to t, is equal to:

JEE Main 2022 (Online) 29th June Morning Shift
92

Let f : R $$\to$$ R be a differentiable function such that $$f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$$ and $$f'\left( {{\pi \over 2}} \right) = 1$$ and

let $$g(x) = \int_x^{\pi /4} {(f'(t)\sec t + \tan t\sec t\,f(t))\,dt} $$ for $$x \in \left[ {{\pi \over 4},{\pi \over 2}} \right)$$. Then $$\mathop {\lim }\limits_{x \to {{\left( {{\pi \over 2}} \right)}^ - }} g(x)$$ is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
93

Let f : R $$\to$$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $$\in$$ R where k > 0 and n is a positive integer. If $${I_1} = \int\limits_0^{4nk} {f(x)dx} $$ and $${I_2} = \int\limits_{ - k}^{3k} {f(x)dx} $$, then :

JEE Main 2022 (Online) 28th June Evening Shift
94

Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $$\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx} $$ is equal to :

JEE Main 2022 (Online) 28th June Morning Shift
95

If m and n respectively are the number of local maximum and local minimum points of the function $$f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \over {2 + {e^t}}}dt} $$, then the ordered pair (m, n) is equal to

JEE Main 2022 (Online) 27th June Evening Shift
96

Let f be a differentiable function in $$\left( {0,{\pi \over 2}} \right)$$. If $$\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $$, then $${1 \over {\sqrt 3 }}f'\left( {{1 \over {\sqrt 3 }}} \right)$$ is equal to

JEE Main 2022 (Online) 27th June Evening Shift
97

The integral $$\int\limits_0^1 {{1 \over {{7^{\left[ {{1 \over x}} \right]}}}}dx} $$, where [ . ] denotes the greatest integer function, is equal to

JEE Main 2022 (Online) 27th June Evening Shift
98

The value of the integral

$$\int\limits_{ - 2}^2 {{{|{x^3} + x|} \over {({e^{x|x|}} + 1)}}dx} $$ is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
99

If $${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $$, then

JEE Main 2022 (Online) 25th June Evening Shift
100

The value of $$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$ is equal to:

JEE Main 2022 (Online) 25th June Morning Shift
101

The value of the integral

$$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {(1 + {e^x})({{\sin }^6}x + {{\cos }^6}x)}}} $$ is equal to

JEE Main 2022 (Online) 24th June Evening Shift
102

$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{n^2}} \over {({n^2} + 1)(n + 1)}} + {{{n^2}} \over {({n^2} + 4)(n + 2)}} + {{{n^2}} \over {({n^2} + 9)(n + 3)}} + \,\,....\,\, + \,\,{{{n^2}} \over {({n^2} + {n^2})(n + n)}}} \right)$$ is equal to :

JEE Main 2022 (Online) 24th June Evening Shift
103
Let f : R $$\to$$ R be a continuous function. Then $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\,dx} } \over {{x^2} - {{{\pi ^2}} \over {16}}}}$$ is equal to :
JEE Main 2021 (Online) 1st September Evening Shift
104
Let $${J_{n,m}} = \int\limits_0^{{1 \over 2}} {{{{x^n}} \over {{x^m} - 1}}dx} $$, $$\forall$$ n > m and n, m $$\in$$ N. Consider a matrix $$A = {[{a_{ij}}]_{3 \times 3}}$$ where $${a_{ij}} = \left\{ {\matrix{ {{j_{6 + i,3}} - {j_{i + 3,3}},} & {i \le j} \cr {0,} & {i > j} \cr } } \right.$$. Then $$\left| {adj{A^{ - 1}}} \right|$$ is :
JEE Main 2021 (Online) 1st September Evening Shift
105
The function f(x), that satisfies the condition
$$f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy} $$, is :
JEE Main 2021 (Online) 1st September Evening Shift
106
If [x] is the greatest integer $$\le$$ x, then

$${\pi ^2}\int\limits_0^2 {\left( {\sin {{\pi x} \over 2}} \right)(x - [x]} {)^{[x]}}dx$$ is equal to :
JEE Main 2021 (Online) 31st August Evening Shift
107
Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $$\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $$, $$0 \le x \le 1$$ and f(0) = 0, then $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\int_0^x {f(t)dt} $$ :
JEE Main 2021 (Online) 31st August Morning Shift
108
The value of the integral $$\int\limits_0^1 {{{\sqrt x dx} \over {(1 + x)(1 + 3x)(3 + x)}}} $$ is :
JEE Main 2021 (Online) 27th August Evening Shift
109
If $${U_n} = \left( {1 + {1 \over {{n^2}}}} \right)\left( {1 + {{{2^2}} \over {{n^2}}}} \right)^2.....\left( {1 + {{{n^2}} \over {{n^2}}}} \right)^n$$, then $$\mathop {\lim }\limits_{n \to \infty } {({U_n})^{{{ - 4} \over {{n^2}}}}}$$ is equal to :
JEE Main 2021 (Online) 27th August Morning Shift
110
$$\int\limits_6^{16} {{{{{\log }_e}{x^2}} \over {{{\log }_e}{x^2} + {{\log }_e}({x^2} - 44x + 484)}}dx} $$ is equal to :
JEE Main 2021 (Online) 27th August Morning Shift
111
If the value of the integral
$$\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $$, where $$\alpha$$, $$\beta$$ $$\in$$ R, 5$$\alpha$$ + 6$$\beta$$ = 0, and [x] denotes the greatest integer less than or equal to x; then the value of ($$\alpha$$ + $$\beta$$)2 is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
112
The value of $$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\left( {{{1 + {{\sin }^2}x} \over {1 + {\pi ^{\sin x}}}}} \right)} \,dx$$ is
JEE Main 2021 (Online) 26th August Evening Shift
113
The value of $$\int\limits_{{{ - 1} \over {\sqrt 2 }}}^{{1 \over {\sqrt 2 }}} {{{\left( {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right)}^{{1 \over 2}}}dx} $$ is :
JEE Main 2021 (Online) 26th August Morning Shift
114
The value of

$$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{r = 0}^{2n - 1} {{{{n^2}} \over {{n^2} + 4{r^2}}}} $$ is :
JEE Main 2021 (Online) 26th August Morning Shift
115
Let f : (a, b) $$\to$$ R be twice differentiable function such that $$f(x) = \int_a^x {g(t)dt} $$ for a differentiable function g(x). If f(x) = 0 has exactly five distinct roots in (a, b), then g(x)g'(x) = 0 has at least :
JEE Main 2021 (Online) 27th July Evening Shift
116
The value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{j = 1}^n {{{(2j - 1) + 8n} \over {(2j - 1) + 4n}}} $$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
117
The value of the definite integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}} $$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
118
If $$f(x) = \left\{ {\matrix{ {\int\limits_0^x {\left( {5 + \left| {1 - t} \right|} \right)dt,} } & {x > 2} \cr {5x + 1,} & {x \le 2} \cr } } \right.$$, then
JEE Main 2021 (Online) 25th July Evening Shift
119
The value of the

integral $$\int\limits_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} $$ is :
JEE Main 2021 (Online) 25th July Evening Shift
120
The value of the definite integral $$\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $$ is :
JEE Main 2021 (Online) 25th July Morning Shift
121
Let $$f:[0,\infty ) \to [0,\infty )$$ be defined as $$f(x) = \int_0^x {[y]dy} $$

where [x] is the greatest integer less than or equal to x. Which of the following is true?
JEE Main 2021 (Online) 25th July Morning Shift
122
If $$\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} \over {1 + 4{\pi ^2}}},\alpha \in R} $$ where [x] is the greatest integer less than or equal to x, then the value of $$\alpha$$ is :
JEE Main 2021 (Online) 22th July Evening Shift
123
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $$ is equal to :
JEE Main 2021 (Online) 20th July Evening Shift
124
If the real part of the complex number $${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$$ is $${1 \over 5}$$ for $$\theta \in (0,\pi )$$, then the value of the integral $$\int_0^\theta {\sin x} dx$$ is equal to:
JEE Main 2021 (Online) 20th July Evening Shift
125
Let $$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$, where $$f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right),x \in R$$. Then which one of the following is correct?
JEE Main 2021 (Online) 20th July Evening Shift
126
Let a be a positive real number such that $$\int_0^a {{e^{x - [x]}}} dx = 10e - 9$$ where [ x ] is the greatest integer less than or equal to x. Then a is equal to:
JEE Main 2021 (Online) 20th July Morning Shift
127
The value of the integral $$\int\limits_{ - 1}^1 {{{\log }_e}(\sqrt {1 - x} + \sqrt {1 + x} )dx} $$ is equal to:
JEE Main 2021 (Online) 20th July Morning Shift
128
Let g(x) = $$\int_0^x {f(t)dt} $$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$ \le $$ f(t) $$ \le $$ 1 for all t$$\in$$ [0, 1] and 0 $$ \le $$ f(t) $$ \le $$ $${1 \over 2}$$ for all t$$\in$$ (1, 3]. The largest possible interval in which g(3) lies is :
JEE Main 2021 (Online) 18th March Evening Shift
129
Let f : R $$ \to $$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$ \to $$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt} $$, then the value of $$\int_0^1 {(F'(x) + f(x)){e^x}dx} $$ lies in the interval
JEE Main 2021 (Online) 17th March Evening Shift
130
If the integral

$$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma $$, where $$\alpha$$, $$\beta$$, $$\gamma$$ are integers and [x] denotes the greatest integer less than or equal to x, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
131
Which of the following statements is correct for the function g($$\alpha$$) for $$\alpha$$ $$\in$$ R such that

$$g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $$
JEE Main 2021 (Online) 17th March Morning Shift
132
Consider the integral
$$I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $$,
where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
133
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $$\int_0^1 {P(x)dx} $$ = 1 and P(x) leaves remainder 5 when it is divided by (x $$-$$ 2). Then the value of 9(b + c) is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
134
Let $$f(x) = \int\limits_0^x {{e^t}f(t)dt + {e^x}} $$ be a differentiable function for all x$$\in$$R. Then f(x) equals :
JEE Main 2021 (Online) 26th February Evening Shift
135
For x > 0, if $$f(x) = \int\limits_1^x {{{{{\log }_e}t} \over {(1 + t)}}dt} $$, then $$f(e) + f\left( {{1 \over e}} \right)$$ is equal to :
JEE Main 2021 (Online) 26th February Evening Shift
136
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
137
The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} } $$, where [ x ] is the greatest integer $$ \le $$ x, is :
JEE Main 2021 (Online) 26th February Morning Shift
138
If $${I_n} = \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\cot }^n}x\,dx} $$, then :
JEE Main 2021 (Online) 25th February Evening Shift
139
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over n} + {n \over {{{(n + 1)}^2}}} + {n \over {{{(n + 2)}^2}}} + ........ + {n \over {{{(2n + 1)}^2}}}} \right]$$ is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
140
The value of $$\int\limits_{ - 1}^1 {{x^2}{e^{[{x^3}]}}} dx$$, where [ t ] denotes the greatest integer $$ \le $$ t, is :
JEE Main 2021 (Online) 25th February Morning Shift
141
The value of the integral, $$\int\limits_1^3 {[{x^2} - 2x - 2]dx} $$, where [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2021 (Online) 24th February Evening Shift
142
Let f(x) be a differentiable function defined on [0, 2] such that f'(x) = f'(2 $$-$$ x) for all x$$ \in $$ (0, 2), f(0) = 1 and f(2) = e2. Then the value of $$\int\limits_0^2 {f(x)} dx$$ is :
JEE Main 2021 (Online) 24th February Evening Shift
143
Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f'(x) $$ \ne $$ 0 for all x $$ \in $$ R. If $$\left| {\matrix{ {f(x)} & {f'(x)} \cr {f'(x)} & {f''(x)} \cr } } \right|$$ = 0, for all x$$ \in $$R, then the value of f(1) lies in the interval :
JEE Main 2021 (Online) 24th February Evening Shift
144
$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$$ is equal to :
JEE Main 2021 (Online) 24th February Morning Shift
145
The integral $$\int\limits_1^2 {{e^x}.{x^x}\left( {2 + {{\log }_e}x} \right)} dx$$ equals :
JEE Main 2020 (Online) 6th September Evening Slot
146
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \right)\sin \left( {x - 1} \right)}}} \right)$$
JEE Main 2020 (Online) 6th September Morning Slot
147
If I1 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx$$ and
I2 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx$$ such
that I2 = $$\alpha $$I1 then $$\alpha $$ equals to :
JEE Main 2020 (Online) 6th September Morning Slot
148
The value of $$\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{1 \over {1 + {e^{\sin x}}}}dx} $$ is:
JEE Main 2020 (Online) 5th September Morning Slot
149
The integral
$$\int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{\tan }^3}x.{{\sin }^2}3x\left( {2{{\sec }^2}x.{{\sin }^2}3x + 3\tan x.\sin 6x} \right)dx} $$
is equal to:
JEE Main 2020 (Online) 4th September Evening Slot
150
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then
$$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ is equal to:
JEE Main 2020 (Online) 4th September Morning Slot
151
If the value of the integral
$$\int\limits_0^{{1 \over 2}} {{{{x^2}} \over {{{\left( {1 - {x^2}} \right)}^{{3 \over 2}}}}}} dx$$

is $${k \over 6}$$, then k is equal to :
JEE Main 2020 (Online) 3rd September Evening Slot
152
Suppose f(x) is a polynomial of degree four, having critical points at –1, 0, 1. If
T = {x $$ \in $$ R | f(x) = f(0)}, then the sum of squares of all the elements of T is :
JEE Main 2020 (Online) 3rd September Evening Slot
153
$$\int\limits_{ - \pi }^\pi {\left| {\pi - \left| x \right|} \right|dx} $$ is equal to :
JEE Main 2020 (Online) 3rd September Morning Slot
154
Let a function ƒ : [0, 5] $$ \to $$ R be continuous, ƒ(1) = 3 and F be defined as :

$$F(x) = \int\limits_1^x {{t^2}g(t)dt} $$ , where $$g(t) = \int\limits_1^t {f(u)du} $$

Then for the function F, the point x = 1 is :
JEE Main 2020 (Online) 9th January Evening Slot
155
The value of
$$\int\limits_0^{2\pi } {{{x{{\sin }^8}x} \over {{{\sin }^8}x + {{\cos }^8}x}}} dx$$ is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
156
If for all real triplets (a, b, c), ƒ(x) = a + bx + cx2; then $$\int\limits_0^1 {f(x)dx} $$ is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
157
If $$I = \int\limits_1^2 {{{dx} \over {\sqrt {2{x^3} - 9{x^2} + 12x + 4} }}} $$, then :
JEE Main 2020 (Online) 8th January Evening Slot
158
$$\mathop {\lim }\limits_{x \to 0} {{\int_0^x {t\sin \left( {10t} \right)dt} } \over x}$$ is equal to
JEE Main 2020 (Online) 8th January Evening Slot
159
The value of $$\alpha $$ for which
$$4\alpha \int\limits_{ - 1}^2 {{e^{ - \alpha \left| x \right|}}dx} = 5$$, is:
JEE Main 2020 (Online) 7th January Evening Slot
160
If $$\theta $$1 and $$\theta $$2 be respectively the smallest and the largest values of $$\theta $$ in (0, 2$$\pi $$) - {$$\pi $$} which satisfy the equation,
2cot2$$\theta $$ - $${5 \over {\sin \theta }}$$ + 4 = 0, then
$$\int\limits_{{\theta _1}}^{{\theta _2}} {{{\cos }^2}3\theta d\theta } $$ is equal to :
JEE Main 2020 (Online) 7th January Evening Slot
161
If ƒ(a + b + 1 - x) = ƒ(x), for all x, where a and b are fixed positive real numbers, then

$${1 \over {a + b}}\int_a^b {x\left( {f(x) + f(x + 1)} \right)} dx$$ is equal to:
JEE Main 2020 (Online) 7th January Morning Slot
162
A value of $$\alpha $$ such that
$$\int\limits_\alpha ^{\alpha + 1} {{{dx} \over {\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}}} = {\log _e}\left( {{9 \over 8}} \right)$$ is :
JEE Main 2019 (Online) 12th April Evening Slot
163
Let f : R $$ \to $$ R be a continuously differentiable function such that f(2) = 6 and f'(2) = $${1 \over {48}}$$. If $$\int\limits_6^{f\left( x \right)} {4{t^3}} dt$$ = (x - 2)g(x), then $$\mathop {\lim }\limits_{x \to 2} g\left( x \right)$$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
164
If $$\int\limits_0^{{\pi \over 2}} {{{\cot x} \over {\cot x + \cos ecx}}} dx$$ = m($$\pi $$ + n), then m.n is equal to
JEE Main 2019 (Online) 12th April Morning Slot
165
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
166
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{{(n + 1)}^{1/3}}} \over {{n^{4/3}}}} + {{{{(n + 2)}^{1/3}}} \over {{n^{4/3}}}} + ....... + {{{{(2n)}^{1/3}}} \over {{n^{4/3}}}}} \right)$$
is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
167
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$,
where [t] denotes the greatest integer function is :
JEE Main 2019 (Online) 10th April Morning Slot
168
If f : R $$ \to $$ R is a differentiable function and f(2) = 6,
then $$\mathop {\lim }\limits_{x \to 2} {{\int\limits_6^{f\left( x \right)} {2tdt} } \over {\left( {x - 2} \right)}}$$ is :-
JEE Main 2019 (Online) 9th April Evening Slot
169
The value of the integral $$\int\limits_0^1 {x{{\cot }^{ - 1}}(1 - {x^2} + {x^4})dx} $$ is :-
JEE Main 2019 (Online) 9th April Evening Slot
170
The value of $$\int\limits_0^{\pi /2} {{{{{\sin }^3}x} \over {\sin x + \cos x}}dx} $$ is
JEE Main 2019 (Online) 9th April Morning Slot
171
Let $$f(x) = \int\limits_0^x {g(t)dt} $$ where g is a non-zero even function. If ƒ(x + 5) = g(x), then $$ \int\limits_0^x {f(t)dt} $$ equals-
JEE Main 2019 (Online) 8th April Evening Slot
172
If $$f(x) = {{2 - x\cos x} \over {2 + x\cos x}}$$ and g(x) = logex, (x > 0) then the value of integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {g\left( {f\left( x \right)} \right)dx{\rm{ }}} $$ is
JEE Main 2019 (Online) 8th April Morning Slot
173
$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over {5n}}} \right)$$ is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
174
The integral $$\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$$ loge x dx is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
175
Let f and g be continuous functions on [0, a] such that f(x) = f(a – x) and g(x) + g(a – x) = 4, then $$\int\limits_0^a \, $$f(x) g(x) dx is equal to :
JEE Main 2019 (Online) 12th January Morning Slot
176
The integral  $$\int\limits_{\pi /6}^{\pi /4} {{{dx} \over {\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} $$  equals :
JEE Main 2019 (Online) 11th January Evening Slot
177
The value of the integral $$\int\limits_{ - 2}^2 {{{{{\sin }^2}x} \over { \left[ {{x \over \pi }} \right] + {1 \over 2}}}} \,dx$$ (where [x] denotes the greatest integer less than or equal to x) is
JEE Main 2019 (Online) 11th January Morning Slot
178
If  $$\int\limits_0^x \, $$f(t) dt = x2 + $$\int\limits_x^1 \, $$ t2f(t) dt then f '$$\left( {{1 \over 2}} \right)$$ is -
JEE Main 2019 (Online) 10th January Evening Slot
179
The value of   $$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {\left[ x \right] + \left[ {\sin x} \right] + 4}}} ,$$  where [t] denotes the greatest integer less than or equal to t, is
JEE Main 2019 (Online) 10th January Evening Slot
180
Let  $${\rm I} = \int\limits_a^b {\left( {{x^4} - 2{x^2}} \right)} dx.$$  If I is minimum then the ordered pair (a, b) is -
JEE Main 2019 (Online) 10th January Morning Slot
181
Let f be a differentiable function from

R to R such that $$\left| {f\left( x \right) - f\left( y \right)} \right| \le 2{\left| {x - y} \right|^{{3 \over 2}}},$$   

for all  $$x,y \in $$ R.

If   $$f\left( 0 \right) = 1$$  

then   $$\int\limits_0^1 {{f^2}} \left( x \right)dx$$  is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
182
If   $$\int\limits_0^{{\pi \over 3}} {{{\tan \theta } \over {\sqrt {2k\,\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }},\left( {k > 0} \right),$$ then value of k is :
JEE Main 2019 (Online) 9th January Evening Slot
183
The value of $$\int\limits_0^\pi {{{\left| {\cos x} \right|}^3}} \,dx$$ is :
JEE Main 2019 (Online) 9th January Morning Slot
184
If $$f(x) = \int\limits_0^x {t\left( {\sin x - \sin t} \right)dt\,\,\,} $$ then :
JEE Main 2018 (Online) 16th April Morning Slot
185
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\sin }^2}x} \over {1 + {2^x}}}} dx$$ is
JEE Main 2018 (Offline)
186
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx} $$ is :
JEE Main 2018 (Online) 15th April Evening Slot
187
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

   $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
JEE Main 2018 (Online) 15th April Evening Slot
188
The value of the integral

$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\sin }^4}} x\left( {1 + \log \left( {{{2 + \sin x} \over {2 - \sin x}}} \right)} \right)dx$$ is :
JEE Main 2018 (Online) 15th April Morning Slot
189
If    $$\int\limits_1^2 {{{dx} \over {{{\left( {{x^2} - 2x + 4} \right)}^{{3 \over 2}}}}}} = {k \over {k + 5}},$$ then k is equal to :
JEE Main 2017 (Online) 9th April Morning Slot
190
If    $$\mathop {\lim }\limits_{n \to \infty } \,\,{{{1^a} + {2^a} + ...... + {n^a}} \over {{{(n + 1)}^{a - 1}}\left[ {\left( {na + 1} \right) + \left( {na + 2} \right) + ..... + \left( {na + n} \right)} \right]}} = {1 \over {60}}$$

for some positive real number a, then a is equal to :
JEE Main 2017 (Online) 9th April Morning Slot
191
The integral $$\int_{{\pi \over {12}}}^{{\pi \over 4}} {\,\,{{8\cos 2x} \over {{{\left( {\tan x + \cot x} \right)}^3}}}} \,dx$$ equals :
JEE Main 2017 (Online) 8th April Morning Slot
192
The integral $$\int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{{dx} \over {1 + \cos x}}} $$ is equal to
JEE Main 2017 (Offline)
193
For x $$ \in $$ R, x $$ \ne $$ 0, if y(x) is a differentiable function such that

x $$\int\limits_1^x y $$ (t) dt = (x + 1) $$\int\limits_1^x ty $$ (t) dt,  then y (x) equals :

(where C is a constant.)
JEE Main 2016 (Online) 10th April Morning Slot
194
The value of the integral

$$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$$

where [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2016 (Online) 10th April Morning Slot
195
If   $$2\int\limits_0^1 {{{\tan }^{ - 1}}xdx = \int\limits_0^1 {{{\cot }^{ - 1}}} } \left( {1 - x + {x^2}} \right)dx,$$

then $$\int\limits_0^1 {{{\tan }^{ - 1}}} \left( {1 - x + {x^2}} \right)dx$$ is equalto :
JEE Main 2016 (Online) 9th April Morning Slot
196
$$\mathop {\lim }\limits_{n \to \infty } {\left( {{{\left( {n + 1} \right)\left( {n + 2} \right)...3n} \over {{n^{2n}}}}} \right)^{{1 \over n}}}$$ is equal to:
JEE Main 2016 (Offline)
197
The integral
$$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
JEE Main 2015 (Offline)
198
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
JEE Main 2014 (Offline)
199
Statement-1 : The value of the integral
$$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}} $$ is equal to $$\pi /6$$

Statement-2 : $$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx.$$

JEE Main 2013 (Offline)
200
The value of $$\int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$ is
AIEEE 2011
201
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$ Then $$\int\limits_0^1 {p\left( x \right)dx} $$ equals :
AIEEE 2010
202
$$\int\limits_0^\pi {\left[ {\cot x} \right]dx,} $$ where $$\left[ . \right]$$ denotes the greatest integer function, is equal to:
AIEEE 2009
203
Let $$F\left( x \right) = f\left( x \right) + f\left( {{1 \over x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {{{\log t} \over {1 + t}}dt,} $$ Then $$F(e)$$ equals
AIEEE 2007
204
The solution for $$x$$ of the equation $$\int\limits_{\sqrt 2 }^x {{{dt} \over {t\sqrt {{t^2} - 1} }} = {\pi \over 2}} $$ is
AIEEE 2007
205
Let $$I = \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx} .$$ Then which one of the following is true?
AIEEE 2007
206
The value of $$\int\limits_1^a {\left[ x \right]} f'\left( x \right)dx,a > 1$$ where $${\left[ x \right]}$$ denotes the greatest integer not exceeding $$x$$ is
AIEEE 2006
207
$$\int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} dx$$ is equal to
AIEEE 2006
208
$$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} $$ is equal to
AIEEE 2006
209
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$,
$$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$\mathop {\lim }\limits_{x \to 2} \int\limits_6^{f\left( x \right)} {{{4{t^3}} \over {x - 2}}dt} $$ equals :
AIEEE 2005
210
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {{n^2}}}{{\sec }^2}{1 \over {{n^2}}} + {2 \over {{n^2}}}{{\sec }^2}{4 \over {{n^2}}}.... + {1 \over n}{{\sec }^2}1} \right]$$
equals
AIEEE 2005
211
If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}dx,{I_2} = \int\limits_0^1 {{2^{{x^3}}}dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}dx} } } $$ and $${I_4} = \int\limits_1^2 {{2^{{x^3}}}dx} $$ then
AIEEE 2005
212
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}} \over {1 + {a^x}}}dx,\,\,a > 0,} $$ is
AIEEE 2005
213
The value of integral, $$\int\limits_3^6 {{{\sqrt x } \over {\sqrt {9 - x} + \sqrt x }}} dx $$ is
AIEEE 2005
214
$$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {{1 \over n}{e^{{r \over n}}}} $$ is
AIEEE 2004
215
The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$ is
AIEEE 2004
216
The value of $$I = \int\limits_0^{\pi /2} {{{{{\left( {\sin x + \cos x} \right)}^2}} \over {\sqrt {1 + \sin 2x} }}dx} $$ is
AIEEE 2004
217
If $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx = A\int\limits_0^{\pi /2} {f\left( {\sin x} \right)dx,} } $$ then $$A$$ is
AIEEE 2004
218
If $$f\left( x \right) = {{{e^x}} \over {1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \right)} \right\}dx} $$
and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}dx} ,$$ then the value of $${{{I_2}} \over {{I_1}}}$$ is
AIEEE 2004
219
The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} $$ is
AIEEE 2003
220
$$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^4} + {3^4} + .... + {n^4}} \over {{n^5}}}$$ - $$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^3} + {3^3} + .... + {n^3}} \over {{n^5}}}$$
AIEEE 2003
221
The value of $$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {{{\sec }^2}tdt} } \over xsinx}$$ is
AIEEE 2003
222
If $$f\left( {a + b - x} \right) = f\left( x \right)$$ then $$\int\limits_a^b {xf\left( x \right)dx} $$ is equal to
AIEEE 2003
223
Let $$f(x)$$ be a function satisfying $$f'(x)=f(x)$$ with $$f(0)=1$$ and $$g(x)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}$$. Then the value of the integral $$\int\limits_0^1 {f\left( x \right)g\left( x \right)dx,} $$ is
AIEEE 2003
224
If $$f\left( y \right) = {e^y},$$ $$g\left( y \right) = y;y > 0$$ and

$$F\left( t \right) = \int\limits_0^t {f\left( {t - y} \right)g\left( y \right)dy,} $$ then :
AIEEE 2003
225
$$\mathop {\lim }\limits_{n \to \infty } {{{1^p} + {2^p} + {3^p} + ..... + {n^p}} \over {{n^{p + 1}}}}$$ is
AIEEE 2002
226
$$\int\limits_0^{10\pi } {\left| {\sin x} \right|dx} $$ is
AIEEE 2002
227
$${I_n} = \int\limits_0^{\pi /4} {{{\tan }^n}x\,dx} $$ then $$\,\mathop {\lim }\limits_{n \to \infty } \,n\left[ {{I_n} + {I_{n + 2}}} \right]$$ equals
AIEEE 2002
228
$$\int\limits_0^2 {\left[ {{x^2}} \right]dx} $$ is
AIEEE 2002
229
$$\int_{ - \pi }^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} dx$$ is
AIEEE 2002
230
If $$y=f(x)$$ makes +$$ve$$ intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$3/4$$ square unit with the axes then $$\int\limits_0^2 {xf'\left( x \right)dx} $$ is
AIEEE 2002
Numerical
1

Let [.] denote the greatest integer function. If $\int_\limits0^{e^3}\left[\frac{1}{e^{x-1}}\right] d x=\alpha-\log _e 2$, then $\alpha^3$ is equal to _________.

JEE Main 2025 (Online) 2nd April Morning Shift
2

If $ 24 \int\limits_0^{\frac{\pi}{4}} \bigg[\sin \left| 4x - \frac{\pi}{12} \right| + [2 \sin x] \bigg] dx = 2\pi + \alpha $, where $[\cdot]$ denotes the greatest integer function, then $\alpha$ is equal to ________.

JEE Main 2025 (Online) 29th January Evening Shift
3
If $\lim\limits _{t \rightarrow 0}\left(\int\limits_0^1(3 x+5)^t d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to ________________.
JEE Main 2025 (Online) 29th January Evening Shift
4

Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a twice differentiable function. If for some $a\ne 0, \int\limits_0^1 f(\lambda x) \mathrm{d} \mathrm{\lambda}=a f(x), f(1)=1$ and $f(16)=\frac{1}{8}$, then $16-f^{\prime}\left(\frac{1}{16}\right)$ is equal to __________.

JEE Main 2025 (Online) 29th January Morning Shift
5

Let $$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\left(n^2+4\right) \sqrt{n^4+16}}\right.$$ $$\left.+\ldots+\frac{n}{\sqrt{n^4+n^4}}-\frac{2 n \cdot n^2}{\left(n^2+n^2\right) \sqrt{n^4+n^4}}\right)$$ be $$\frac{\pi}{k}$$, using only the principal values of the inverse trigonometric functions. Then $$\mathrm{k}^2$$ is equal to _________.

JEE Main 2024 (Online) 9th April Morning Shift
6

Let $$[t]$$ denote the largest integer less than or equal to $$t$$. If $$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) \mathrm{d} x=\mathrm{a}+\mathrm{b} \sqrt{2}-\sqrt{3}-\sqrt{5}+\mathrm{c} \sqrt{6}-\sqrt{7}$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbf{Z}$$, then $$\mathrm{a}+\mathrm{b}+\mathrm{c}$$ is equal to __________.

JEE Main 2024 (Online) 6th April Evening Shift
7

Let $$r_k=\frac{\int_0^1\left(1-x^7\right)^k d x}{\int_0^1\left(1-x^7\right)^{k+1} d x}, k \in \mathbb{N}$$. Then the value of $$\sum_\limits{k=1}^{10} \frac{1}{7\left(r_k-1\right)}$$ is equal to _________.

JEE Main 2024 (Online) 6th April Morning Shift
8

If $$f(t)=\int_\limits0^\pi \frac{2 x \mathrm{~d} x}{1-\cos ^2 \mathrm{t} \sin ^2 x}, 0<\mathrm{t}<\pi$$, then the value of $$\int_\limits0^{\frac{\pi}{2}} \frac{\pi^2 \mathrm{dt}}{f(\mathrm{t})}$$ equals __________.

JEE Main 2024 (Online) 5th April Evening Shift
9

If the shortest distance between the lines $$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$ and $$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$ is $$\frac{38}{3 \sqrt{5}} \mathrm{k}$$, and $$\int_\limits 0^{\mathrm{k}}\left[x^2\right] \mathrm{d} x=\alpha-\sqrt{\alpha}$$, where $$[x]$$ denotes the greatest integer function, then $$6 \alpha^3$$ is equal to _________.

JEE Main 2024 (Online) 4th April Morning Shift
10

If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\frac{\pi}{\mathrm{b} \sqrt{3}}$$, where $$\mathrm{a}, \mathrm{b} \in \mathrm{N}$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to _________.

JEE Main 2024 (Online) 4th April Morning Shift
11
Let $f:(0, \infty) \rightarrow \mathbf{R}$ and $\mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(x^2\right)=x^4+x^5$, then $\sum\limits_{\mathrm{r}=1}^{12} f\left(\mathrm{r}^2\right)$ is equal to ____________.
JEE Main 2024 (Online) 1st February Evening Shift
12
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\beta \log _{\mathrm{e}}(3+2 \sqrt{2})$, where $\alpha, \beta$ are integers, then $\alpha^2+\beta^2$ equals :
JEE Main 2024 (Online) 1st February Morning Shift
13

$$\left|\frac{120}{\pi^3} \int_\limits0^\pi \frac{x^2 \sin x \cos x}{\sin ^4 x+\cos ^4 x} d x\right| \text { is equal to }$$ ________.

JEE Main 2024 (Online) 31st January Evening Shift
14

If the integral $$525 \int_\limits0^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x$$ is equal to $$(n \sqrt{2}-64)$$, then $$n$$ is equal to _________.

JEE Main 2024 (Online) 31st January Morning Shift
15

Let $$S=(-1, \infty)$$ and $$f: S \rightarrow \mathbb{R}$$ be defined as

$$f(x)=\int_\limits{-1}^x\left(e^t-1\right)^{11}(2 t-1)^5(t-2)^7(t-3)^{12}(2 t-10)^{61} d t \text {, }$$

Let $$\mathrm{p}=$$ Sum of squares of the values of $$x$$, where $$f(x)$$ attains local maxima on $$S$$, and $$\mathrm{q}=$$ Sum of the values of $$\mathrm{x}$$, where $$f(x)$$ attains local minima on $$S$$. Then, the value of $$p^2+2 q$$ is _________.

JEE Main 2024 (Online) 31st January Morning Shift
16

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}$$. If $$\alpha M=\beta N, \alpha, \beta \in \mathbb{N}$$, then the least value of $$\alpha^2+\beta^2$$ is equal to __________.

JEE Main 2024 (Online) 31st January Morning Shift
17

The value of $$9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$, is

JEE Main 2024 (Online) 30th January Morning Shift
18

Let the slope of the line $$45 x+5 y+3=0$$ be $$27 r_1+\frac{9 r_2}{2}$$ for some $$r_1, r_2 \in \mathbb{R}$$. Then $$\lim _\limits{x \rightarrow 3}\left(\int_3^x \frac{8 t^2}{\frac{3 r_2 x}{2}-r_2 x^2-r_1 x^3-3 x} d t\right)$$ is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
19

If $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where $$\alpha, \beta$$ and $$\gamma$$ are rational numbers, then $$3 \alpha+4 \beta-\gamma$$ is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
20

Let $$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where $$g$$ is a continuous odd function. If $$\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+\mathrm{e}^x}\right) \mathrm{d} x=\left(\frac{\pi}{\alpha}\right)^2-\alpha$$, then $$\alpha$$ is equal to _________.

JEE Main 2024 (Online) 27th January Evening Shift
21

Let $$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x d x, n \in \mathbb{N}$$. Then $$f_{21}-f_{20}$$ is equal to _________

JEE Main 2023 (Online) 13th April Evening Shift
22

Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where

$$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots$$ Then $$S_{2}(3)+6 C_{3}$$ is equal to ____________.

JEE Main 2023 (Online) 13th April Morning Shift
23

If $$\int_\limits{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$$, then $$k$$ is equal to ___________.

JEE Main 2023 (Online) 12th April Morning Shift
24

For $$m, n > 0$$, let $$\alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t$$. If $$11 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}$$, then $$p$$ is equal to ___________.

JEE Main 2023 (Online) 11th April Morning Shift
25

Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}$$, then $$\alpha+\beta+\gamma+\delta$$ is equal to __________.

JEE Main 2023 (Online) 8th April Evening Shift
26

Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.

JEE Main 2023 (Online) 8th April Morning Shift
27

Let $$f(x)=\frac{x}{\left(1+x^{n}\right)^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n > 2$$.

If $$f^{n}(x)=\left(f \circ f \circ f \ldots .\right.$$. upto $$n$$ times) $$(x)$$, then

$$\lim _\limits{n \rightarrow \infty} \int_\limits{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$$ is equal to ____________.

JEE Main 2023 (Online) 6th April Evening Shift
28

If $$\int\limits_0^\pi {{{{5^{\cos x}}(1 + \cos x\cos 3x + {{\cos }^2}x + {{\cos }^3}x\cos 3x)dx} \over {1 + {5^{\cos x}}}} = {{k\pi } \over {16}}} $$, then k is equal to _____________.

JEE Main 2023 (Online) 1st February Evening Shift
29

If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.

JEE Main 2023 (Online) 1st February Morning Shift
30

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{-2}$$, then $$2 f(0)-f(2)$$ is equal to ____________.

JEE Main 2023 (Online) 1st February Morning Shift
31

$$\lim_\limits{x \rightarrow 0} \frac{48}{x^{4}} \int_\limits{0}^{x} \frac{t^{3}}{t^{6}+1} \mathrm{~d} t$$ is equal to ___________.

JEE Main 2023 (Online) 30th January Morning Shift
32

If $$\int\limits_{{1 \over 3}}^3 {|{{\log }_e}x|dx = {m \over n}{{\log }_e}\left( {{{{n^2}} \over e}} \right)} $$, where m and n are coprime natural numbers, then $${m^2} + {n^2} - 5$$ is equal to _____________.

JEE Main 2023 (Online) 25th January Evening Shift
33

Let $$f$$ be $$a$$ differentiable function defined on $$\left[ {0,{\pi \over 2}} \right]$$ such that $$f(x) > 0$$ and $$f(x) + \int_0^x {f(t)\sqrt {1 - {{({{\log }_e}f(t))}^2}} dt = e,\forall x \in \left[ {0,{\pi \over 2}} \right]}$$. Then $$\left( {6{{\log }_e}f\left( {{\pi \over 6}} \right)} \right)^2$$ is equal to __________.

JEE Main 2023 (Online) 24th January Evening Shift
34

The value of $$12\int\limits_0^3 {\left| {{x^2} - 3x + 2} \right|dx} $$ is ____________

JEE Main 2023 (Online) 24th January Morning Shift
35

The value of $${8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{2023}}} \over {{{(\sin x)}^{2023}} + {{(\cos x)}^{2023}}}}dx} $$ is ___________

JEE Main 2023 (Online) 24th January Morning Shift
36

The value of the integral $$\int\limits_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$$ is equal to _________.

JEE Main 2022 (Online) 28th July Evening Shift
37

If $$\int\limits_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} \mathrm{~d} x=\alpha \sqrt{2}+\beta \sqrt{3}$$, where $$\alpha, \beta$$ are integers, then $$\alpha+\beta$$ is equal to __________.

JEE Main 2022 (Online) 28th July Morning Shift
38

Let $$f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$$ where [t] denotes the greatest integer $$\leq \mathrm{t}$$. Then $$\int\limits_{0}^{10} f(x) \mathrm{d} x+\int\limits_{0}^{10}(f(x))^{2} \mathrm{~d} x+\int\limits_{0}^{10}|f(x)| \mathrm{d} x$$ is equal to ________________.

JEE Main 2022 (Online) 27th July Evening Shift
39

Let f be a differentiable function satisfying $$f(x)=\frac{2}{\sqrt{3}} \int\limits_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2} x}{3}\right) \mathrm{d} \lambda, x>0$$ and $$f(1)=\sqrt{3}$$. If $$y=f(x)$$ passes through the point $$(\alpha, 6)$$, then $$\alpha$$ is equal to _____________.

JEE Main 2022 (Online) 27th July Evening Shift
40

If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}+1} \mathrm{~d} x$$, then $$\mathrm{n} \in \mathbf{N}$$ is equal to ______________.

JEE Main 2022 (Online) 26th July Morning Shift
41

Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}} + {e^{ - 2x}}} \right)\cos 2x + {2 \over a}x} $$, then $$(2 a+1)^{5}\, a^{2}$$ is equal to _______________.

JEE Main 2022 (Online) 25th July Evening Shift
42

Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every n $$\in$$ N. Then the sum of all the elements of the set {n $$\in$$ N : an $$\in$$ (2, 30)} is ____________.

JEE Main 2022 (Online) 25th July Evening Shift
43

$$ \begin{aligned} &\text { If } \lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}}[(n k+1)+(n k+2)+\ldots+(n k+n)] \\ &=33 \cdot \lim _{n \rightarrow \infty} \frac{1}{n^{k+1}} \cdot\left[1^{k}+2^{k}+3^{k}+\ldots+n^{k}\right] \end{aligned}$$, then the integral value of $$\mathrm{k}$$ is equal to _____________

JEE Main 2022 (Online) 25th July Morning Shift
44

Let $$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)dx} $$. If $$f(1) + f'(1) = \alpha e - {1 \over 6}$$, then the value of 150$$\alpha$$ is equal to ___________.

JEE Main 2022 (Online) 30th June Morning Shift
45

The integral $${{24} \over \pi }\int_0^{\sqrt 2 } {{{(2 - {x^2})dx} \over {(2 + {x^2})\sqrt {4 + {x^4}} }}} $$ is equal to ____________.

JEE Main 2022 (Online) 26th June Evening Shift
46

Let f(x) = max {|x + 1|, |x + 2|, ....., |x + 5|}. Then $$\int\limits_{ - 6}^0 {f(x)dx} $$ is equal to __________.

JEE Main 2022 (Online) 26th June Morning Shift
47

The value of the integral

$${{48} \over {{\pi ^4}}}\int\limits_0^\pi {\left( {{{3\pi {x^2}} \over 2} - {x^3}} \right){{\sin x} \over {1 + {{\cos }^2}x}}dx} $$ is equal to __________.

JEE Main 2022 (Online) 26th June Morning Shift
48

The value of b > 3 for which $$12\int\limits_3^b {{1 \over {({x^2} - 1)({x^2} - 4)}}dx = {{\log }_e}\left( {{{49} \over {40}}} \right)} $$, is equal to ___________.

JEE Main 2022 (Online) 25th June Evening Shift
49

Let $$f(\theta ) = \sin \theta + \int\limits_{ - \pi /2}^{\pi /2} {(\sin \theta + t\cos \theta )f(t)dt} $$. Then the value of $$\left| {\int_0^{\pi /2} {f(\theta )d\theta } } \right|$$ is _____________.

JEE Main 2022 (Online) 24th June Morning Shift
50

Let $$\mathop {Max}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \alpha $$ and $$\mathop {Min}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \beta $$.

If $$\int\limits_{\beta - {8 \over 3}}^{2\alpha - 1} {Max\left\{ {{{9 - {x^2}} \over {5 - x}},x} \right\}dx = {\alpha _1} + {\alpha _2}{{\log }_e}\left( {{8 \over {15}}} \right)} $$ then $${\alpha _1} + {\alpha _2}$$ is equal to _____________.

JEE Main 2022 (Online) 24th June Morning Shift
51
Let [t] denote the greatest integer $$\le$$ t. Then the value of

$$8.\int\limits_{ - {1 \over 2}}^1 {([2x] + |x|)dx} $$ is ___________.
JEE Main 2021 (Online) 31st August Morning Shift
52
If $$x\phi (x) = \int\limits_5^x {(3{t^2} - 2\phi '(t))dt} $$, x > $$-$$2, and $$\phi$$(0) = 4, then $$\phi$$(2) is __________.
JEE Main 2021 (Online) 31st August Morning Shift
53
If $$\int_0^\pi {({{\sin }^3}x){e^{ - {{\sin }^2}x}}dx = \alpha - {\beta \over e}\int_0^1 {\sqrt t {e^t}dt} } $$, then $$\alpha$$ + $$\beta$$ is equal to ____________.
JEE Main 2021 (Online) 27th July Evening Shift
54
Let the domain of the function

$$f(x) = {\log _4}\left( {{{\log }_5}\left( {{{\log }_3}(18x - {x^2} - 77)} \right)} \right)$$ be (a, b). Then the value of the integral $$\int\limits_a^b {{{{{\sin }^3}x} \over {({{\sin }^3}x + {{\sin }^3}(a + b - x)}}} dx$$ is equal to _____________.
JEE Main 2021 (Online) 27th July Morning Shift
55
Let $$F:[3,5] \to R$$ be a twice differentiable function on (3, 5) such that

$$F(x) = {e^{ - x}}\int\limits_3^x {(3{t^2} + 2t + 4F'(t))dt} $$. If $$F'(4) = {{\alpha {e^\beta } - 224} \over {{{({e^\beta } - 4)}^2}}}$$, then $$\alpha$$ + $$\beta$$ is equal to _______________.
JEE Main 2021 (Online) 27th July Morning Shift
56
Let P(x) be a real polynomial of degree 3 which vanishes at x = $$-$$3. Let P(x) have local minima at x = 1, local maxima at x = $$-$$1 and $$\int\limits_{ - 1}^1 {P(x)dx} $$ = 18, then the sum of all the coefficients of the polynomial P(x) is equal to _________.
JEE Main 2021 (Online) 18th March Evening Shift
57
Let f(x) and g(x) be two functions satisfying f(x2) + g(4 $$-$$ x) = 4x3 and g(4 $$-$$ x) + g(x) = 0, then the value of $$\int\limits_{ - 4}^4 {f{{(x)}^2}dx} $$ is
JEE Main 2021 (Online) 18th March Morning Shift
58
Let $${I_n} = \int_1^e {{x^{19}}{{(\log |x|)}^n}} dx$$, where n$$\in$$N. If (20)I10 = $$\alpha$$I9 + $$\beta$$I8, for natural numbers $$\alpha$$ and $$\beta$$, then $$\alpha$$ $$-$$ $$\beta$$ equals to ___________.
JEE Main 2021 (Online) 17th March Evening Shift
59
If [ . ] represents the greatest integer function, then the value of


$$\left| {\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \right]dx} } \right|$$ is ____________.
JEE Main 2021 (Online) 17th March Morning Shift
60
Let f : R $$ \to $$ R be a continuous function such that f(x) + f(x + 1) = 2, for all x$$\in$$R.

If $${I_1} = \int\limits_0^8 {f(x)dx} $$ and $${I_2} = \int\limits_{ - 1}^3 {f(x)dx} $$, then the value of I1 + 2I2 is equal to ____________.
JEE Main 2021 (Online) 16th March Morning Shift
61
Let f : (0, 2) $$ \to $$ R be defined as f(x) = log2$$\left( {1 + \tan \left( {{{\pi x} \over 4}} \right)} \right)$$. Then, $$\mathop {\lim }\limits_{n \to \infty } {2 \over n}\left( {f\left( {{1 \over n}} \right) + f\left( {{2 \over n}} \right) + ... + f(1)} \right)$$ is equal to ___________.
JEE Main 2021 (Online) 16th March Morning Shift
62
If the normal to the curve y(x) = $$\int\limits_0^x {(2{t^2} - 15t + 10)dt} $$ at a point (a, b) is parallel to the line x + 3y = $$-$$5, a > 1, then the value of | a + 6b | is equal to ___________.
JEE Main 2021 (Online) 16th March Morning Shift
63
If $${I_{m,n}} = \int\limits_0^1 {{x^{m - 1}}{{(1 - x)}^{n - 1}}dx} $$, for m, $$n \ge 1$$, and
$$\int\limits_0^1 {{{{x^{m - 1}} + {x^{n - 1}}} \over {{{(1 + x)}^{m + 1}}}}} dx = \alpha {I_{m,n}}\alpha \in R$$, then $$\alpha$$ equals ___________.
JEE Main 2021 (Online) 26th February Evening Shift
64
The value of the integral $$\int\limits_0^\pi {|{{\sin }\,}2x|dx} $$ is ___________.
JEE Main 2021 (Online) 26th February Morning Shift
65
The value of $$\int\limits_{ - 2}^2 {|3{x^2} - 3x - 6|dx} $$ is ___________.
JEE Main 2021 (Online) 25th February Evening Shift
66
If $$\int\limits_{ - a}^a {\left( {\left| x \right| + \left| {x - 2} \right|} \right)} dx = 22$$, (a > 2) and [x] denotes the greatest integer $$ \le $$ x, then$$\int\limits_{ - a}^a {\left( {x + \left[ x \right]} \right)} dx$$ is equal to _________.
JEE Main 2021 (Online) 24th February Morning Shift
67
Let {x} and [x] denote the fractional part of x and
the greatest integer $$ \le $$ x respectively of a real
number x. If $$\int_0^n {\left\{ x \right\}dx} ,\int_0^n {\left[ x \right]dx} $$ and 10(n2 – n),
$$\left( {n \in N,n > 1} \right)$$ are three consecutive terms of a G.P., then n is equal to_____.
JEE Main 2020 (Online) 4th September Evening Slot
68
Let [t] denote the greatest integer less than or equal to t.
Then the value of $$\int\limits_1^2 {\left| {2x - \left[ {3x} \right]} \right|dx} $$ is ______.
JEE Main 2020 (Online) 2nd September Evening Slot
69
The integral $$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $$
is equal to______.
JEE Main 2020 (Online) 2nd September Morning Slot