Vector Algebra
Practice Questions
MCQ (Single Correct Answer)
1

Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $ and $ \vec{b} = 2\hat{i} + \hat{j} - \hat{k} $. Let $ \hat{c} $ be a unit vector in the plane of the vectors $ \vec{a} $ and $ \vec{b} $ and be perpendicular to $ \vec{a} $. Then such a vector $ \hat{c} $ is:

JEE Main 2025 (Online) 8th April Evening Shift
2

Let $ \vec{a} $ and $ \vec{b} $ be the vectors of the same magnitude such that

$ \frac{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}| - |\vec{a} - \vec{b}|} = \sqrt{2} + 1. $ Then $ \frac{|\vec{a} + \vec{b}|^2}{|\vec{a}|^2} $ is :

JEE Main 2025 (Online) 7th April Evening Shift
3

Let the angle $\theta, 0<\theta<\frac{\pi}{2}$ between two unit vectors $\hat{a}$ and $\hat{b}$ be $\sin ^{-1}\left(\frac{\sqrt{65}}{9}\right)$. If the vector $\vec{c}=3 \hat{a}+6 \hat{b}+9(\hat{a} \times \hat{b})$, then the value of $9(\vec{c} \cdot \hat{a})-3(\vec{c} \cdot \hat{b})$ is

JEE Main 2025 (Online) 7th April Morning Shift
4

Consider two vectors $\vec{u}=3 \hat{i}-\hat{j}$ and $\vec{v}=2 \hat{i}+\hat{j}-\lambda \hat{k}, \lambda>0$. The angle between them is given by $\cos ^{-1}\left(\frac{\sqrt{5}}{2 \sqrt{7}}\right)$. Let $\vec{v}=\vec{v}_1+\overrightarrow{v_2}$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\overrightarrow{v_2}$ is perpendicular to $\vec{u}$. Then the value $\left|\overrightarrow{v_1}\right|^2+\left|\overrightarrow{v_2}\right|^2$ is equal to

JEE Main 2025 (Online) 4th April Morning Shift
5
Let $\overrightarrow{\mathrm{a}}=2 \hat{i}-3 \hat{j}+\hat{k}, \quad \overrightarrow{\mathrm{~b}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector $\overrightarrow{\mathrm{c}}$ be such that $(\vec{a}-\vec{c}) \times \vec{b}=-18 \hat{i}-3 \hat{j}+12 \hat{k}$ and $\vec{a} \cdot \vec{c}=3$. If $\vec{b} \times \vec{c}=\vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to :
JEE Main 2025 (Online) 2nd April Evening Shift
6

If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :

JEE Main 2025 (Online) 2nd April Morning Shift
7

Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is:

JEE Main 2025 (Online) 29th January Evening Shift
8

Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+7 \hat{j}+3 \hat{k}$. Let $\mathrm{L}_1 : \overrightarrow{\mathrm{r}}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda \vec{a}, \mathrm{\lambda} \in \mathbf{R}$ and $\mathrm{L}_2: \overrightarrow{\mathrm{r}}=(\hat{j}+\hat{k})+\mu \vec{b}, \mu \in \mathrm{R}$ be two lines. If the line $\mathrm{L}_3$ passes through the point of intersection of $\mathrm{L}_1$ and $L_y$ and is parallel to $\vec{a}+\vec{b}$, then $L_3$ passes through the point :

JEE Main 2025 (Online) 29th January Morning Shift
9

Let $ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \ \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k} $ and $ \vec{c} $ be a vector such that $ \vec{a} \times \vec{c} = \vec{a} \times \vec{b} = \vec{c} \times \vec{b} $ and $ (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168 $. Then the maximum value of $|\vec{c}|^2$ is :

JEE Main 2025 (Online) 29th January Morning Shift
10

If the components of $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ along and perpendicular to $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ respectively, are $\frac{16}{11}(3 \hat{i}+\hat{j}-\hat{k})$ and $\frac{1}{11}(-4 \hat{i}-5 \hat{j}-17 \hat{k})$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :

JEE Main 2025 (Online) 28th January Evening Shift
11
Let $A, B, C$ be three points in xy-plane, whose position vector are given by $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $a \hat{i}+(1-a) \hat{j}$ respectively with respect to the origin O . If the distance of the point C from the line bisecting the angle between the vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of $a$ is :
JEE Main 2025 (Online) 28th January Evening Shift
12

Let the position vectors of three vertices of a triangle be $4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r}$ and $2 \vec{p}-\vec{q}+2 \vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p}+\vec{q}+\vec{r}}{4}$ and $\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}$ respectively, then $\alpha+2 \beta+5 \gamma$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
13

Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :

JEE Main 2025 (Online) 24th January Evening Shift
14

Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}$ be three vectors such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}$. If the vector $\vec{C}$ is perpendicular to $\vec{b}$ and $\vec{a} \cdot \vec{c}=5$, then $|\vec{c}|$ is equal to

JEE Main 2025 (Online) 24th January Morning Shift
15

Let the point A divide the line segment joining the points $\mathrm{P}(-1,-1,2)$ and $\mathrm{Q}(5,5,10)$ internally in the ratio $r: 1(r>0)$. If O is the origin and $(\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}})-\frac{1}{5}|\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{OA}}|^2=10$, then the value of r is :

JEE Main 2025 (Online) 23rd January Evening Shift
16

Let the position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and C of a tetrahedron ABCD be $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$ respectively. The altitude from the vertex $D$ to the opposite face $A B C$ meets the median line segment through $A$ of the triangle $A B C$ at the point $E$. If the length of $A D$ is $\frac{\sqrt{110}}{3}$ and the volume of the tetrahedron is $\frac{\sqrt{805}}{6 \sqrt{2}}$, then the position vector of E is

JEE Main 2025 (Online) 23rd January Morning Shift
17

Let the arc $A C$ of a circle subtend a right angle at the centre $O$. If the point $B$ on the arc $A C$, divides the arc $A C$ such that $\frac{\text { length of } \operatorname{arc} A B}{\text { length of } \operatorname{arc} B C}=\frac{1}{5}$, and $\overrightarrow{O C}=\alpha \overrightarrow{O A}+\beta \overrightarrow{O B}$, then $\alpha+\sqrt{2}(\sqrt{3}-1) \beta$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
18

Let $\vec{a}$ and $\vec{b}$ be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a}+2 \vec{b}$ and $3 \vec{a}-\lambda \vec{b}$ are perpendicular to each other, then the number of values of $\lambda$ in $[-1,3]$ is :

JEE Main 2025 (Online) 22nd January Evening Shift
19

Between the following two statements:

Statement I : Let $$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$$. Then the vector $$\vec{r}$$ satisfying $$\vec{a} \times \vec{r}=\vec{a} \times \vec{b}$$ and $$\vec{a} \cdot \vec{r}=0$$ is of magnitude $$\sqrt{10}$$.

Statement II : In a triangle $$A B C, \cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2}$$.

JEE Main 2024 (Online) 9th April Evening Shift
20

Let $$\vec{a}=2 \hat{i}+\alpha \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=\beta \hat{j}-\hat{k}$$, where $$\alpha$$ and $$\beta$$ are integers and $$\alpha \beta=-6$$. Let the values of the ordered pair $$(\alpha, \beta)$$, for which the area of the parallelogram of diagonals $$\vec{a}+\vec{b}$$ and $$\vec{b}+\vec{c}$$ is $$\frac{\sqrt{21}}{2}$$, be $$\left(\alpha_1, \beta_1\right)$$ and $$\left(\alpha_2, \beta_2\right)$$. Then $$\alpha_1^2+\beta_1^2-\alpha_2 \beta_2$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
21

Let three vectors ,$$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+4 \hat{j}+2 \hat{k}, \overrightarrow{\mathrm{b}}=5 \hat{i}+3 \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}$$ form a triangle such that $$\vec{c}=\vec{a}-\vec{b}$$ and the area of the triangle is $$5 \sqrt{6}$$. If $$\alpha$$ is a positive real number, then $$|\vec{c}|^2$$ is equal to:

JEE Main 2024 (Online) 9th April Morning Shift
22

Let $$\overrightarrow{O A}=2 \vec{a}, \overrightarrow{O B}=6 \vec{a}+5 \vec{b}$$ and $$\overrightarrow{O C}=3 \vec{b}$$, where $$O$$ is the origin. If the area of the parallelogram with adjacent sides $$\overrightarrow{O A}$$ and $$\overrightarrow{O C}$$ is 15 sq. units, then the area (in sq. units) of the quadrilateral $$O A B C$$ is equal to:

JEE Main 2024 (Online) 9th April Morning Shift
23

Let $$\overrightarrow{\mathrm{a}}=4 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{\mathrm{b}}=11 \hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{\mathrm{c}}$$ be a vector such that $$(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}} \times(-2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}})$$. If $$(2 \vec{a}+3 \vec{b}) \cdot \vec{c}=1670$$, then $$|\vec{c}|^2$$ is equal to:

JEE Main 2024 (Online) 8th April Evening Shift
24

Let $$\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{j}-5 \hat{k}$$ and $$\overrightarrow{\mathrm{c}}=3 \hat{i}-\hat{j}+\lambda \hat{k}$$ be three vectors. Let $$\overrightarrow{\mathrm{r}}$$ be a unit vector along $$\vec{b}+\vec{c}$$. If $$\vec{r} \cdot \vec{a}=3$$, then $$3 \lambda$$ is equal to:

JEE Main 2024 (Online) 8th April Evening Shift
25

The set of all $$\alpha$$, for which the vectors $$\vec{a}=\alpha t \hat{i}+6 \hat{j}-3 \hat{k}$$ and $$\vec{b}=t \hat{i}-2 \hat{j}-2 \alpha t \hat{k}$$ are inclined at an obtuse angle for all $$t \in \mathbb{R}$$, is

JEE Main 2024 (Online) 8th April Morning Shift
26

Let $$\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=((\vec{a} \times(\hat{i}+\hat{j})) \times \hat{i}) \times \hat{i}$$. Then the square of the projection of $$\vec{a}$$ on $$\vec{b}$$ is:

JEE Main 2024 (Online) 6th April Evening Shift
27

Let $$\overrightarrow{\mathrm{a}}=6 \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+\hat{j}$$. If $$\overrightarrow{\mathrm{c}}$$ is a is vector such that $$|\overrightarrow{\mathrm{c}}| \geq 6, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=6|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\vec{a} \times \vec{b}$$ and $$\vec{c}$$ is $$60^{\circ}$$, then $$|(\vec{a} \times \vec{b}) \times \vec{c}|$$ is equal to:

JEE Main 2024 (Online) 6th April Evening Shift
28

Let $$\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$$ and $$\vec{c}$$ be three vectors such that $$(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$$. If $$\vec{a} \cdot \vec{c}=-29$$, then $$\vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})$$ is equal to:

JEE Main 2024 (Online) 5th April Evening Shift
29

Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:

JEE Main 2024 (Online) 5th April Evening Shift
30

If $$\mathrm{A}(1,-1,2), \mathrm{B}(5,7,-6), \mathrm{C}(3,4,-10)$$ and $$\mathrm{D}(-1,-4,-2)$$ are the vertices of a quadrilateral ABCD, then its area is :

JEE Main 2024 (Online) 5th April Morning Shift
31

For $$\lambda>0$$, let $$\theta$$ be the angle between the vectors $$\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. If the vectors $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ are mutually perpendicular, then the value of (14 cos $$\theta)^2$$ is equal to

JEE Main 2024 (Online) 4th April Evening Shift
32

Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$$. If $$\vec{d}$$ is the unit vector in the direction of $$\vec{b}+\vec{c}$$ such that $$\vec{a} \cdot \vec{d}=1$$, then $$(\vec{a} \times \vec{b}) \cdot \vec{c}$$ is equal to

JEE Main 2024 (Online) 4th April Evening Shift
33

Let a unit vector which makes an angle of $$60^{\circ}$$ with $$2 \hat{i}+2 \hat{j}-\hat{k}$$ and an angle of $$45^{\circ}$$ with $$\hat{i}-\hat{k}$$ be $$\vec{C}$$. Then $$\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$$ is:

JEE Main 2024 (Online) 4th April Morning Shift
34
Let $\overrightarrow{\mathrm{a}}=-5 \hat{i}+\hat{j}-3 \hat{k}, \overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}-4 \hat{k}$ and

$\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to :
JEE Main 2024 (Online) 1st February Morning Shift
35

Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to

JEE Main 2024 (Online) 31st January Morning Shift
36

The distance of the point $$Q(0,2,-2)$$ form the line passing through the point $$P(5,-4, 3)$$ and perpendicular to the lines $$\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R}$$ and $$\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}$$ is :

JEE Main 2024 (Online) 31st January Morning Shift
37

Let $$\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k}, \alpha, \beta \in \mathbb{R}$$. Let a vector $$\vec{b}$$ be such that the angle between $$\vec{a}$$ and $$\vec{b}$$ is $$\frac{\pi}{4}$$ and $$|\vec{b}|^2=6$$. If $$\vec{a} \cdot \vec{b}=3 \sqrt{2}$$, then the value of $$\left(\alpha^2+\beta^2\right)|\vec{a} \times \vec{b}|^2$$ is equal to

JEE Main 2024 (Online) 30th January Evening Shift
38

Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{b}|=1$$ and $$|\vec{b} \times \vec{a}|=2$$. Then $$|(\vec{b} \times \vec{a})-\vec{b}|^2$$ is equal to

JEE Main 2024 (Online) 30th January Evening Shift
39

Let $$\overrightarrow{\mathrm{a}}=\mathrm{a}_1 \hat{i}+\mathrm{a}_2 \hat{j}+\mathrm{a}_3 \hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\mathrm{b}_1 \hat{i}+\mathrm{b}_2 \hat{j}+\mathrm{b}_3 \hat{k}$$ be two vectors such that $$|\overrightarrow{\mathrm{a}}|=1, \vec{a} \cdot \vec{b}=2$$ and $$|\vec{b}|=4$$. If $$\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$$, then the angle between $$\vec{b}$$ and $$\vec{c}$$ is equal to:

JEE Main 2024 (Online) 30th January Morning Shift
40

Let a unit vector $$\hat{u}=x \hat{i}+y \hat{j}+z \hat{k}$$ make angles $$\frac{\pi}{2}, \frac{\pi}{3}$$ and $$\frac{2 \pi}{3}$$ with the vectors $$\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}, \frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}$$ and $$\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$$ respectively. If $$\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}$$ then $$|\hat{u}-\vec{v}|^2$$ is equal to

JEE Main 2024 (Online) 29th January Evening Shift
41

Let $$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b} \text { and } \overrightarrow{O C}=\vec{b}$$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $$\mathrm{{{area\,of\,the\,quadrilateral\,OA\,BC} \over {area\,of\,S}}}$$ is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
42

Let $$\vec{a}, \vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that $$\vec{b}$$ and $$\vec{c}$$ are non-collinear. If $$\vec{a}+5 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+6 \vec{c}$$ is collinear with $$\vec{a}$$ and $$\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$$, then $$\alpha+\beta$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
43

Let the position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle be $$2 \hat{i}+2 \hat{j}+\hat{k}, \hat{i}+2 \hat{j}+2 \hat{k}$$ and $$2 \hat{i}+\hat{j}+2 \hat{k}$$ respectively. Let $$l_1, l_2$$ and $$l_3$$ be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ respectively, then $$l_1^2+l_2^2+l_3^2$$ equals:

JEE Main 2024 (Online) 27th January Evening Shift
44

The position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle are $$2 \hat{i}-3 \hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$$ and $$-\hat{i}+\hat{j}+3 \hat{k}$$ respectively. Let $$l$$ denotes the length of the angle bisector $$\mathrm{AD}$$ of $$\angle \mathrm{BAC}$$ where $$\mathrm{D}$$ is on the line segment $$\mathrm{BC}$$, then $$2 l^2$$ equals :

JEE Main 2024 (Online) 27th January Evening Shift
45
Let $\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+\hat{k}, $
$\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k})$.
Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}$ and $\vec{a} \cdot \vec{c}=3$.
Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
JEE Main 2024 (Online) 27th January Morning Shift
46
Let $S$ be the set of all $(\lambda, \mu)$ for which the vectors $\lambda \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\mu \hat{k}$ and $3 \hat{i}-4 \hat{j}+5 \hat{k}$, where $\lambda-\mu=5$, are coplanar, then $\sum\limits_{(\lambda, \mu) \in S} 80\left(\lambda^2+\mu^2\right)$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
47
Let $\mathrm{ABCD}$ be a quadrilateral. If $\mathrm{E}$ and $\mathrm{F}$ are the mid points of the diagonals $\mathrm{AC}$ and $\mathrm{BD}$ respectively and $(\overrightarrow{A B}-\overrightarrow{B C})+(\overrightarrow{A D}-\overrightarrow{D C})=k \overrightarrow{F E}$, then $k$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
48

Let $$|\vec{a}|=2,|\vec{b}|=3$$ and the angle between the vectors $$\vec{a}$$ and $$\vec{b}$$ be $$\frac{\pi}{4}$$. Then $$|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$$ is equal to :

JEE Main 2023 (Online) 13th April Evening Shift
49

Let for a triangle $$\mathrm{ABC}$$,

$$\overrightarrow{\mathrm{AB}}=-2 \hat{i}+\hat{j}+3 \hat{k}$$

$$\overrightarrow{\mathrm{CB}}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$$

$$\overrightarrow{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+\delta \hat{k}$$

If $$\delta > 0$$ and the area of the triangle $$\mathrm{ABC}$$ is $$5 \sqrt{6}$$, then $$\overrightarrow{C B} \cdot \overrightarrow{C A}$$ is equal to

JEE Main 2023 (Online) 13th April Evening Shift
50

Let $$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$$ and $$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$. If a vector $$\vec{d}$$ satisfies $$\vec{d} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{d} \cdot \vec{a}=24$$, then $$|\vec{d}|^{2}$$ is equal to :

JEE Main 2023 (Online) 13th April Morning Shift
51

Let $$a, b, c$$ be three distinct real numbers, none equal to one. If the vectors $$a \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+b \hat{j}+\hat{\mathrm{k}}$$ and $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+c \hat{\mathrm{k}}$$ are coplanar, then $$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$$ is equal to :

JEE Main 2023 (Online) 12th April Morning Shift
52

Let $$\lambda \in \mathbb{Z}, \vec{a}=\lambda \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=\overrightarrow{0}, \vec{a} \cdot \vec{c}=-17$$ and $$\vec{b} \cdot \vec{c}=-20$$. Then $$|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}$$ is equal to :

JEE Main 2023 (Online) 12th April Morning Shift
53

If four distinct points with position vectors $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$ are coplanar, then $$[\vec{a} \,\,\vec{b} \,\,\vec{c}]$$ is equal to :

JEE Main 2023 (Online) 11th April Evening Shift
54

For any vector $$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$$, with $$10\left|a_{i}\right|<1, i=1,2,3$$, consider the following statements :

(A): $$\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} \leq|\vec{a}|$$

(B) : $$|\vec{a}| \leq 3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$$

JEE Main 2023 (Online) 11th April Morning Shift
55

Let $$\vec{a}$$ be a non-zero vector parallel to the line of intersection of the two planes described by $$\hat{i}+\hat{j}, \hat{i}+\hat{k}$$ and $$\hat{i}-\hat{j}, \hat{j}-\hat{k}$$. If $$\theta$$ is the angle between the vector $$\vec{a}$$ and the vector $$\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$$ and $$\vec{a} \cdot \vec{b}=6$$, then the ordered pair $$(\theta,|\vec{a} \times \vec{b}|)$$ is equal to :

JEE Main 2023 (Online) 11th April Morning Shift
56

Let $$\vec{a}=2 \hat{i}+7 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{k}$$ and $$\vec{c}=\hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{d}$$ be a vector which is perpendicular to both $$\vec{a}$$ and $$\vec{b}$$, and $$\vec{c} \cdot \vec{d}=12$$. Then $$(-\hat{i}+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
57

If the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively the circumcenter and the orthocentre of a $$\triangle \mathrm{ABC}$$, then $$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
58

Let O be the origin and the position vector of the point P be $$ - \widehat i - 2\widehat j + 3\widehat k$$. If the position vectors of the points A, B and C are $$ - 2\widehat i + \widehat j - 3\widehat k,2\widehat i + 4\widehat j - 2\widehat k$$ and $$ - 4\widehat i + 2\widehat j - \widehat k$$ respectively, then the projection of the vector $$\overrightarrow {OP} $$ on a vector perpendicular to the vectors $$\overrightarrow {AB} $$ and $$\overrightarrow {AC} $$ is :

JEE Main 2023 (Online) 10th April Morning Shift
59

An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $$\overrightarrow {OP} = \overrightarrow u ,\overrightarrow {OR} = \overrightarrow v $$, and $$\overrightarrow {OQ} = \alpha \overrightarrow u + \beta \overrightarrow v $$, then $$\alpha ,{\beta ^2}$$ are the roots of the equation :

JEE Main 2023 (Online) 10th April Morning Shift
60

Let the vectors $$\vec{u}_{1}=\hat{i}+\hat{j}+a \hat{k}, \vec{u}_{2}=\hat{i}+b \hat{j}+\hat{k}$$ and $$\vec{u}_{3}=c \hat{i}+\hat{j}+\hat{k}$$ be coplanar. If the vectors $$\vec{v}_{1}=(a+b) \hat{i}+c \hat{j}+c \hat{k}, \vec{v}_{2}=a \hat{i}+(b+c) \hat{j}+a \hat{k}$$ and $$\vec{v}_{3}=b \hat{i}+b \hat{j}+(c+a) \hat{k}$$ are also coplanar, then $$6(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
61

The area of the quadrilateral $$\mathrm{ABCD}$$ with vertices $$\mathrm{A}(2,1,1), \mathrm{B}(1,2,5), \mathrm{C}(-2,-3,5)$$ and $$\mathrm{D}(1,-6,-7)$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
62

If the points with position vectors $$\alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k}, \frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$$ are collinear, then $$(19 \alpha-6 \beta)^{2}$$ is equal to :

JEE Main 2023 (Online) 8th April Morning Shift
63

Let the vectors $$\vec{a}, \vec{b}, \vec{c}$$ represent three coterminous edges of a parallelopiped of volume V. Then the volume of the parallelopiped, whose coterminous edges are represented by $$\vec{a}, \vec{b}+\vec{c}$$ and $$\vec{a}+2 \vec{b}+3 \vec{c}$$ is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
64

The sum of all values of $$\alpha$$, for which the points whose position vectors are $$\hat{i}-2 \hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k},(\alpha+1) \hat{i}+2 \hat{k}$$ and $$9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$$ are coplanar, is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
65

Let the position vectors of the points A, B, C and D be $$5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$$ and $$-\hat{i}+5 \hat{j}+6 \hat{k}$$. Let the set $$S=\{\lambda \in \mathbb{R}$$ : the points A, B, C and D are coplanar $$\}$$.

Then $$\sum_\limits{\lambda \in S}(\lambda+2)^{2}$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
66

Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
67

Let $$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$$ and $$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$$ be two vectors. Then which one of the following statements is TRUE ?

JEE Main 2023 (Online) 1st February Evening Shift
68

Let $$\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$$ and $$\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$$ be three given vectors. If $$\overrightarrow{\mathrm{r}}$$ is a vector such that $$\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$$ and $$\vec{r} \cdot \vec{b}=0$$, then $$|\vec{r}|$$ is equal to :

JEE Main 2023 (Online) 1st February Evening Shift
69
Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be three vectors. If $\vec{r}$ is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^{2}$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
70

Let $$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$$, and $$\vec{b}$$ and $$\vec{c}$$ be two nonzero vectors such that $$|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$$ and $$\vec{b} \cdot \vec{c}=0$$. Consider the following two statements:

(A) $$|\vec{a}+\lambda \vec{c}| \geq|\vec{a}|$$ for all $$\lambda \in \mathbb{R}$$.

(B) $$\vec{a}$$ and $$\vec{c}$$ are always parallel.

Then,

JEE Main 2023 (Online) 31st January Morning Shift
71
Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$.

If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$,

then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to :
JEE Main 2023 (Online) 30th January Evening Shift
72
Let $\vec{a}$ and $\vec{b}$ be two vectors, Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the value of $\vec{b} \cdot \vec{c}$ is :
JEE Main 2023 (Online) 30th January Evening Shift
73

If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors and $$\widehat n$$ is a unit vector perpendicular to $$\overrightarrow c $$ such that $$\overrightarrow a = \alpha \overrightarrow b - \widehat n,(\alpha \ne 0)$$ and $$\overrightarrow b \,.\overrightarrow c = 12$$, then $$\left| {\overrightarrow c \times (\overrightarrow a \times \overrightarrow b )} \right|$$ is equal to :

JEE Main 2023 (Online) 30th January Morning Shift
74

Let a unit vector $$\widehat{O P}$$ make angles $$\alpha, \beta, \gamma$$ with the positive directions of the co-ordinate axes $$\mathrm{OX}$$, $$\mathrm{OY}, \mathrm{OZ}$$ respectively, where $$\beta \in\left(0, \frac{\pi}{2}\right)$$. If $$\widehat{\mathrm{OP}}$$ is perpendicular to the plane through points $$(1,2,3),(2,3,4)$$ and $$(1,5,7)$$, then which one of the following is true?

JEE Main 2023 (Online) 30th January Morning Shift
75

If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to :

JEE Main 2023 (Online) 29th January Evening Shift
76

Let $$\overrightarrow a = 4\widehat i + 3\widehat j$$ and $$\overrightarrow b = 3\widehat i - 4\widehat j + 5\widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right) + 25 = 0,\overrightarrow c \,.(\widehat i + \widehat j + \widehat k) = 4$$, and projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ is 1, then the projection of $$\overrightarrow c $$ on $$\overrightarrow b $$ equals :

JEE Main 2023 (Online) 29th January Evening Shift
77

If the vectors $$\overrightarrow a = \lambda \widehat i + \mu \widehat j + 4\widehat k$$, $$\overrightarrow b = - 2\widehat i + 4\widehat j - 2\widehat k$$ and $$\overrightarrow c = 2\widehat i + 3\widehat j + \widehat k$$ are coplanar and the projection of $$\overrightarrow a $$ on the vector $$\overrightarrow b $$ is $$\sqrt {54} $$ units, then the sum of all possible values of $$\lambda + \mu $$ is equal to :

JEE Main 2023 (Online) 29th January Morning Shift
78

Let $$\overrightarrow a = - \widehat i - \widehat j + \widehat k,\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat i - \widehat j$$. Then $$\overrightarrow a - 6\overrightarrow b $$ is equal to :

JEE Main 2023 (Online) 25th January Evening Shift
79

If the four points, whose position vectors are $$3\widehat i - 4\widehat j + 2\widehat k,\widehat i + 2\widehat j - \widehat k, - 2\widehat i - \widehat j + 3\widehat k$$ and $$5\widehat i - 2\alpha \widehat j + 4\widehat k$$ are coplanar, then $$\alpha$$ is equal to :

JEE Main 2023 (Online) 25th January Evening Shift
80

The vector $$\overrightarrow a = - \widehat i + 2\widehat j + \widehat k$$ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is $$\overrightarrow b $$. Then the projection of $$3\overrightarrow a + \sqrt 2 \overrightarrow b $$ on $$\overrightarrow c = 5\widehat i + 4\widehat j + 3\widehat k$$ is :

JEE Main 2023 (Online) 25th January Morning Shift
81

Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non zero vectors such that $$\overrightarrow b $$ . $$\overrightarrow c $$ = 0 and $$\overrightarrow a \times (\overrightarrow b \times \overrightarrow c ) = {{\overrightarrow b - \overrightarrow c } \over 2}$$. If $$\overrightarrow d $$ be a vector such that $$\overrightarrow b \,.\,\overrightarrow d = \overrightarrow a \,.\,\overrightarrow b $$, then $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d )$$ is equal to

JEE Main 2023 (Online) 25th January Morning Shift
82

Let $$\overrightarrow \alpha = 4\widehat i + 3\widehat j + 5\widehat k$$ and $$\overrightarrow \beta = \widehat i + 2\widehat j - 4\widehat k$$. Let $${\overrightarrow \beta _1}$$ be parallel to $$\overrightarrow \alpha $$ and $${\overrightarrow \beta _2}$$ be perpendicular to $$\overrightarrow \alpha $$. If $$\overrightarrow \beta = {\overrightarrow \beta _1} + {\overrightarrow \beta _2}$$, then the value of $$5{\overrightarrow \beta _2}\,.\left( {\widehat i + \widehat j + \widehat k} \right)$$ is :

JEE Main 2023 (Online) 24th January Evening Shift
83

Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that

$${{QA} \over {AR}} = {{RB} \over {BP}} = {{PC} \over {CQ}} = {1 \over 2}$$. Then $${{Area(\Delta PQR)} \over {Area(\Delta ABC)}}$$ is equal to :

JEE Main 2023 (Online) 24th January Morning Shift
84

Let $$\overrightarrow u = \widehat i - \widehat j - 2\widehat k,\overrightarrow v = 2\widehat i + \widehat j - \widehat k,\overrightarrow v .\,\overrightarrow w = 2$$ and $$\overrightarrow v \times \overrightarrow w = \overrightarrow u + \lambda \overrightarrow v $$. Then $$\overrightarrow u .\,\overrightarrow w $$ is equal to :

JEE Main 2023 (Online) 24th January Morning Shift
85

Let $$\vec{a}, \vec{b}, \vec{c}$$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$$, then $$|\vec{a}|+|\vec{b}|+|\vec{c}|$$ is equal to :

JEE Main 2022 (Online) 29th July Evening Shift
86

Let $$\overrightarrow{\mathrm{a}}=3 \hat{i}+\hat{j}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}+\hat{k}$$. Let $$\overrightarrow{\mathrm{c}}$$ be a vector satisfying $$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{c}}$$. If $$\overrightarrow{\mathrm{b}}$$ and $$\overrightarrow{\mathrm{c}}$$ are non-parallel, then the value of $$\lambda$$ is :

JEE Main 2022 (Online) 29th July Morning Shift
87

Let $$\hat{a}$$ and $$\hat{b}$$ be two unit vectors such that the angle between them is $$\frac{\pi}{4}$$. If $$\theta$$ is the angle between the vectors $$(\hat{a}+\hat{b})$$ and $$(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$$, then the value of $$164 \,\cos ^{2} \theta$$ is equal to :

JEE Main 2022 (Online) 29th July Morning Shift
88

Let S be the set of all a $$\in R$$ for which the angle between the vectors $$ \vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$$ and $$\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k}$$, $$(b>1)$$ is acute. Then S is equal to :

JEE Main 2022 (Online) 28th July Evening Shift
89

Let the vectors $$\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}, \vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$$ and $$\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R}$$ be such that for $$\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$$. Then, the set of all values of $$t$$ is :

JEE Main 2022 (Online) 28th July Morning Shift
90

Let a vector $$\vec{a}$$ has magnitude 9. Let a vector $$\vec{b}$$ be such that for every $$(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}$$, the vector $$(x \vec{a}+y \vec{b})$$ is perpendicular to the vector $$(6 y \vec{a}-18 x \vec{b})$$. Then the value of $$|\vec{a} \times \vec{b}|$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
91

Let $$\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}$$ and $$\vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$$ be two vectors, such that $$\vec{a} \times \vec{b}=-\hat{i}+9 \hat{j}+12 \hat{k}$$. Then the projection of $$\vec{b}-2 \vec{a}$$ on $$\vec{b}+\vec{a}$$ is equal to :

JEE Main 2022 (Online) 27th July Morning Shift
92

$$ \text { Let } \vec{a}=2 \hat{i}-\hat{j}+5 \hat{k} \text { and } \vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k} \text {. If }((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2} \text {, then }|\vec{b} \times 2 \hat{j}| $$ is equal to :

JEE Main 2022 (Online) 27th July Morning Shift
93

Let $$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=2 \hat{i}+\hat{j}-\alpha \hat{k}, \alpha>0$$. If the projection of $$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$$ on the vector $$-\hat{i}+2 \hat{j}-2 \hat{k}$$ is 30, then $$\alpha$$ is equal to :

JEE Main 2022 (Online) 26th July Morning Shift
94

Let $$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$$ and let $$\vec{b}$$ be a vector such that $$\vec{a} \times \vec{b}=2 \hat{i}-\hat{k}$$ and $$\vec{a} \cdot \vec{b}=3$$. Then the projection of $$\vec{b}$$ on the vector $$\vec{a}-\vec{b}$$ is :

JEE Main 2022 (Online) 25th July Evening Shift
95

Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :

$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$

$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

Then

JEE Main 2022 (Online) 25th July Morning Shift
96

Let a vector $$\overrightarrow c $$ be coplanar with the vectors $$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat j - \widehat k$$. If the vector $$\overrightarrow c $$ also satisfies the conditions $$\overrightarrow c \,.\,\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right] = - 42$$ and $$\left( {\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right)\,.\,\widehat k = 3$$, then the value of $$|\overrightarrow c {|^2}$$ is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
97
Let A, B, C be three points whose position vectors respectively are

$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$

$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$

$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$

If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :

JEE Main 2022 (Online) 29th June Evening Shift
98

Let $$\overrightarrow a = \alpha \widehat i + 3\widehat j - \widehat k$$, $$\overrightarrow b = 3\widehat i - \beta \widehat j + 4\widehat k$$ and $$\overrightarrow c = \widehat i + 2\widehat j - 2\widehat k$$ where $$\alpha ,\,\beta \in R$$, be three vectors. If the projection of $$\overrightarrow a $$ on $$\overrightarrow c $$ is $${{10} \over 3}$$ and $$\overrightarrow b \times \overrightarrow c = - 6\widehat i + 10\widehat j + 7\widehat k$$, then the value of $$\alpha + \beta $$ is equal to :

JEE Main 2022 (Online) 29th June Morning Shift
99

Let $$\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$$ and $$\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$$, where $$\alpha \in R$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$\sqrt {15({\alpha ^2} + 4)} $$, then the value of $$2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$$ is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
100

Let $$\overrightarrow a $$ be a vector which is perpendicular to the vector $$3\widehat i + {1 \over 2}\widehat j + 2\widehat k$$. If $$\overrightarrow a \times \left( {2\widehat i + \widehat k} \right) = 2\widehat i - 13\widehat j - 4\widehat k$$, then the projection of the vector $$\overrightarrow a $$ on the vector $$2\widehat i + 2\widehat j + \widehat k$$ is :

JEE Main 2022 (Online) 28th June Evening Shift
101

Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be the vectors along the diagonals of a parallelogram having area $$2\sqrt 2 $$. Let the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ be acute, $$|\overrightarrow a | = 1$$, and $$|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$$. If $$\overrightarrow c = 2\sqrt 2 \left( {\overrightarrow a \times \overrightarrow b } \right) - 2\overrightarrow b $$, then an angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is :

JEE Main 2022 (Online) 27th June Evening Shift
102

Let $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$ and $$\overrightarrow c = 2\widehat i - 3\widehat j + 2\widehat k$$. Then the number of vectors $$\overrightarrow b $$ such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$|\overrightarrow b | \in $$ {1, 2, ........, 10} is :

JEE Main 2022 (Online) 27th June Morning Shift
103

If $$\overrightarrow a \,.\,\overrightarrow b = 1,\,\overrightarrow b \,.\,\overrightarrow c = 2$$ and $$\overrightarrow c \,.\,\overrightarrow a = 3$$, then the value of $$\left[ {\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right),\,\overrightarrow b \times \left( {\overrightarrow c \times \overrightarrow a } \right),\,\overrightarrow c \times \left( {\overrightarrow b \times \overrightarrow a } \right)} \right]$$ is :

JEE Main 2022 (Online) 26th June Morning Shift
104

Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} > 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:

JEE Main 2022 (Online) 25th June Morning Shift
105

Let $$\widehat a$$ and $$\widehat b$$ be two unit vectors such that $$|(\widehat a + \widehat b) + 2(\widehat a \times \widehat b)| = 2$$. If $$\theta$$ $$\in$$ (0, $$\pi$$) is the angle between $$\widehat a$$ and $$\widehat b$$, then among the statements :

(S1) : $$2|\widehat a \times \widehat b| = |\widehat a - \widehat b|$$

(S2) : The projection of $$\widehat a$$ on ($$\widehat a$$ + $$\widehat b$$) is $${1 \over 2}$$

JEE Main 2022 (Online) 24th June Evening Shift
106

Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :

JEE Main 2022 (Online) 24th June Morning Shift
107
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ three vectors mutually perpendicular to each other and have same magnitude. If a vector $${ \overrightarrow r } $$ satisfies.

$$\overrightarrow a \times \{ (\overrightarrow r - \overrightarrow b ) \times \overrightarrow a \} + \overrightarrow b \times \{ (\overrightarrow r - \overrightarrow c ) \times \overrightarrow b \} + \overrightarrow c \times \{ (\overrightarrow r - \overrightarrow a ) \times \overrightarrow c \} = \overrightarrow 0 $$, then $$\overrightarrow r $$ is equal to :
JEE Main 2021 (Online) 31st August Evening Shift
108
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two vectors
such that $$\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$$ and the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is 60$$^\circ$$. If $${1 \over 8}\overrightarrow a $$ is a unit vector, then $$\left| {\overrightarrow b } \right|$$ is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
109
A hall has a square floor of dimension 10 m $$\times$$ 10 m (see the figure) and vertical walls. If the angle GPH between the diagonals AG and BH is $${\cos ^{ - 1}}{1 \over 5}$$, then the height of the hall (in meters) is :

JEE Main 2021 (Online) 26th August Evening Shift Mathematics - Vector Algebra Question 140 English
JEE Main 2021 (Online) 26th August Evening Shift
110
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = \widehat j - \widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a \times \overrightarrow c = \overrightarrow b $$ and $$\overrightarrow a .\overrightarrow c = 3$$, then $$\overrightarrow a .(\overrightarrow b \times \overrightarrow c )$$ is equal to :
JEE Main 2021 (Online) 26th August Morning Shift
111
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three vectors such that $$\overrightarrow a $$ = $$\overrightarrow b $$ $$\times$$ ($$\overrightarrow b $$ $$\times$$ $$\overrightarrow c $$). If magnitudes of the vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ are $$\sqrt 2 $$, 1 and 2 respectively and the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is $$\theta \left( {0 < \theta < {\pi \over 2}} \right)$$, then the value of 1 + tan$$\theta$$ is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
112
Let $$\overrightarrow a = \widehat i + \widehat j + 2\widehat k$$ and $$\overrightarrow b = - \widehat i + 2\widehat j + 3\widehat k$$. Then the vector product $$\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\left( {\overrightarrow a \times \left( {\left( {\overrightarrow a - \overrightarrow b } \right) \times \overrightarrow b } \right)} \right) \times \overrightarrow b } \right)$$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
113
Let a, b and c be distinct positive numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\widehat i+\widehat k$$ and $$c\widehat i + c\widehat j + b\widehat k$$ are co-planar, then c is equal to :
JEE Main 2021 (Online) 25th July Evening Shift
114
If $$\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 5$$ and $$\left| {\overrightarrow a \times \overrightarrow b } \right|$$ = 8, then $$\left| {\overrightarrow a .\,\overrightarrow b } \right|$$ is equal to :
JEE Main 2021 (Online) 25th July Evening Shift
115
Let the vectors

$$(2 + a + b)\widehat i + (a + 2b + c)\widehat j - (b + c)\widehat k,(1 + b)\widehat i + 2b\widehat j - b\widehat k$$ and $$(2 + b)\widehat i + 2b\widehat j + (1 - b)\widehat k$$, $$a,b,c, \in R$$

be co-planar. Then which of the following is true?
JEE Main 2021 (Online) 25th July Morning Shift
116
Let a vector $${\overrightarrow a }$$ be coplanar with vectors $$\overrightarrow b = 2\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j + \widehat k$$. If $${\overrightarrow a}$$ is perpendicular to $$\overrightarrow d = 3\widehat i + 2\widehat j + 6\widehat k$$, and $$\left| {\overrightarrow a } \right| = \sqrt {10} $$. Then a possible value of $$[\matrix{ {\overrightarrow a } & {\overrightarrow b } & {\overrightarrow c } \cr } ] + [\matrix{ {\overrightarrow a } & {\overrightarrow b } & {\overrightarrow d } \cr } ] + [\matrix{ {\overrightarrow a } & {\overrightarrow c } & {\overrightarrow d } \cr } ]$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
117
Let three vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$, $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$\left| {\overrightarrow a } \right| = 2$$. Then which one of the following is not true?
JEE Main 2021 (Online) 22th July Evening Shift
118
In a triangle ABC, if $$\left| {\overrightarrow {BC} } \right| = 3$$, $$\left| {\overrightarrow {CA} } \right| = 5$$ and $$\left| {\overrightarrow {BA} } \right| = 7$$, then the projection of the vector $$\overrightarrow {BA} $$ on $$\overrightarrow {BC} $$ is equal to :
JEE Main 2021 (Online) 20th July Evening Shift
119
Let $$\overrightarrow a = 2\widehat i + \widehat j - 2\widehat k$$ and $$\overrightarrow b = \widehat i + \widehat j$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a .\,\overrightarrow c = \left| {\overrightarrow c } \right|,\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$ and the angle between $$(\overrightarrow a \times \overrightarrow b )$$ and $$\overrightarrow c $$ is $${\pi \over 6}$$, then the value of $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right|$$ is :
JEE Main 2021 (Online) 20th July Morning Shift
120
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two non-zero vectors perpendicular to each other and $$|\overrightarrow a | = |\overrightarrow b |$$. If $$|\overrightarrow a \times \overrightarrow b | = |\overrightarrow a |$$, then the angle between the vectors $$\left( {\overrightarrow a + \overrightarrow b + \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)$$ and $${\overrightarrow a }$$ is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
121
In a triangle ABC, if $$|\overrightarrow {BC} | = 8,|\overrightarrow {CA} | = 7,|\overrightarrow {AB} | = 10$$, then the projection of the vector $$\overrightarrow {AB} $$ on $$\overrightarrow {AC} $$ is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
122
A vector $$\overrightarrow a $$ has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, $$\overrightarrow a $$ has components p + 1 and $$\sqrt {10} $$, then the value of p is equal to :
JEE Main 2021 (Online) 18th March Morning Shift
123
Let O be the origin. Let $$\overrightarrow {OP} = x\widehat i + y\widehat j - \widehat k$$ and $$\overrightarrow {OQ} = - \widehat i + 2\widehat j + 3x\widehat k$$, x, y$$\in$$R, x > 0, be such that $$\left| {\overrightarrow {PQ} } \right| = \sqrt {20} $$ and the vector $$\overrightarrow {OP} $$ is perpendicular $$\overrightarrow {OQ} $$. If $$\overrightarrow {OR} $$ = $$3\widehat i + z\widehat j - 7\widehat k$$, z$$\in$$R, is coplanar with $$\overrightarrow {OP} $$ and $$\overrightarrow {OQ} $$, then the value of x2 + y2 + z2 is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
124
Let $$\overrightarrow a $$ = 2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + 4$$\widehat k$$ and $$\overrightarrow b $$ = 7$$\widehat i$$ + $$\widehat j$$ $$-$$ 6$$\widehat k$$.

If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow r $$ $$\times$$ $$\overrightarrow b $$, $$\overrightarrow r $$ . ($$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$) = $$-$$3, then $$\overrightarrow r $$ . (2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + $$\widehat k$$) is equal to :
JEE Main 2021 (Online) 17th March Morning Shift
125
Let $$\overrightarrow a $$ = $$\widehat i$$ + 2$$\widehat j$$ $$-$$ 3$$\widehat k$$ and $$\overrightarrow b = 2\widehat i$$ $$-$$ 3$$\widehat j$$ + 5$$\widehat k$$. If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow b $$ $$\times$$ $$\overrightarrow r $$,

$$\overrightarrow r $$ . $$\left( {\alpha \widehat i + 2\widehat j + \widehat k} \right)$$ = 3 and $$\overrightarrow r \,.\,\left( {2\widehat i + 5\widehat j - \alpha \widehat k} \right)$$ = $$-$$1, $$\alpha$$ $$\in$$ R, then the

value of $$\alpha$$ + $${\left| {\overrightarrow r } \right|^2}$$ is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
126
Let a vector $$\alpha \widehat i + \beta \widehat j$$ be obtained by rotating the vector $$\sqrt 3 \widehat i + \widehat j$$ by an angle 45$$^\circ$$ about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices ($$\alpha$$, $$\beta$$), (0, $$\beta$$) and (0, 0) is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
127
If vectors $$\overrightarrow {{a_1}} = x\widehat i - \widehat j + \widehat k$$ and $$\overrightarrow {{a_2}} = \widehat i + y\widehat j + z\widehat k$$ are collinear, then a possible unit vector parallel to the vector $$x\widehat i + y\widehat j + z\widehat k$$ is :
JEE Main 2021 (Online) 26th February Evening Shift
128
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are perpendicular, then
$$\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)} \right)$$ is equal to :
JEE Main 2021 (Online) 26th February Morning Shift
129
If the volume of a parallelopiped, whose
coterminus edges are given by the
vectors $$\overrightarrow a = \widehat i + \widehat j + n\widehat k$$,
$$\overrightarrow b = 2\widehat i + 4\widehat j - n\widehat k$$ and
$$\overrightarrow c = \widehat i + n\widehat j + 3\widehat k$$ ($$n \ge 0$$), is 158 cu. units, then :
JEE Main 2020 (Online) 5th September Morning Slot
130
Let x0 be the point of Local maxima of $$f(x) = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)$$, where
$$\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k$$, $$\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k$$, $$\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k$$. Then the value of
$$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $$ at x = x0 is :
JEE Main 2020 (Online) 4th September Morning Slot
131
Let a, b c $$ \in $$ R be such that a2 + b2 + c2 = 1. If
$$a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right)$$,
where $${\theta = {\pi \over 9}}$$, then the angle between the vectors $$a\widehat i + b\widehat j + c\widehat k$$ and $$b\widehat i + c\widehat j + a\widehat k$$ is :
JEE Main 2020 (Online) 3rd September Evening Slot
132
The lines
$$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$ and
$$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
JEE Main 2020 (Online) 3rd September Morning Slot
133
Let $$\overrightarrow a = \widehat i - 2\widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ be two vectors. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow a $$ and $$\overrightarrow c .\overrightarrow a = 0$$, then $$\overrightarrow c .\overrightarrow b $$ is equal to
JEE Main 2020 (Online) 8th January Evening Slot
134
Let the volume of a parallelopiped whose coterminous edges are given by

$$\overrightarrow u = \widehat i + \widehat j + \lambda \widehat k$$, $$\overrightarrow v = \widehat i + \widehat j + 3\widehat k$$ and

$$\overrightarrow w = 2\widehat i + \widehat j + \widehat k$$ be 1 cu. unit. If $$\theta $$ be the angle between the edges $$\overrightarrow u $$ and $$\overrightarrow w $$ , then cos$$\theta $$ can be :
JEE Main 2020 (Online) 8th January Morning Slot
135
Let $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that
$$\overrightarrow a + \vec b + \overrightarrow c = \overrightarrow 0 $$. If $$\lambda = \overrightarrow a .\vec b + \vec b.\overrightarrow c + \overrightarrow c .\overrightarrow a $$ and
$$\overrightarrow d = \overrightarrow a \times \vec b + \vec b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a $$, then the ordered pair, $$\left( {\lambda ,\overrightarrow d } \right)$$ is equal to :
JEE Main 2020 (Online) 7th January Evening Slot
136
A vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k\left( {\alpha ,\beta \in R} \right)$$ lies in the plane of the vectors, $$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i - \widehat j + 4\widehat k$$. If $$\overrightarrow a $$ bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$, then:
JEE Main 2020 (Online) 7th January Morning Slot
137
Let $$\alpha $$ $$ \in $$ R and the three vectors

$$\overrightarrow a = \alpha \widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 2\widehat i + \widehat j - \alpha \widehat k$$

and $$\overrightarrow c = \alpha \widehat i - 2\widehat j + 3\widehat k$$.

Then the set S = {$$\alpha $$ : $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ are coplanar} :
JEE Main 2019 (Online) 12th April Evening Slot
138
If the volume of parallelopiped formed by the vectors $$\widehat i + \lambda \widehat j + \widehat k$$, $$\widehat j + \lambda \widehat k$$ and $$\lambda \widehat i + \widehat k$$ is minimum, then $$\lambda $$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
139
Let $$\overrightarrow a = 3\widehat i + 2\widehat j + 2\widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j - 2\widehat k$$ be two vectors. If a vector perpendicular to both the vectors $$\overrightarrow a + \overrightarrow b $$ and $$\overrightarrow a - \overrightarrow b $$ has the magnitude 12 then one such vector is :
JEE Main 2019 (Online) 12th April Morning Slot
140
The distance of the point having position vector $$ - \widehat i + 2\widehat j + 6\widehat k$$ from the straight line passing through the point (2, 3, – 4) and parallel to the vector, $$6\widehat i + 3\widehat j - 4\widehat k$$ is :
JEE Main 2019 (Online) 10th April Evening Slot
141
Let A (3, 0, –1), B(2, 10, 6) and C(1, 2, 1) be the vertices of a triangle and M be the midpoint of AC. If G divides BM in the ratio, 2 : 1, then cos ($$\angle $$GOA) (O being the origin) is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
142
If a unit vector $$\overrightarrow a $$ makes angles $$\pi $$/3 with $$\widehat i$$ , $$\pi $$/ 4 with $$\widehat j$$ and $$\theta $$$$ \in $$(0, $$\pi $$) with $$\widehat k$$, then a value of $$\theta $$ is :-
JEE Main 2019 (Online) 9th April Evening Slot
143
Let $$\overrightarrow \alpha = 3\widehat i + \widehat j$$ and $$\overrightarrow \beta = 2\widehat i - \widehat j + 3 \widehat k$$ . If $$\overrightarrow \beta = {\overrightarrow \beta _1} - \overrightarrow {{\beta _2}} $$, where $${\overrightarrow \beta _1}$$ is parallel to $$\overrightarrow \alpha $$ and $$\overrightarrow {{\beta _2}} $$ is perpendicular to $$\overrightarrow \alpha $$ , then $${\overrightarrow \beta _1} \times \overrightarrow {{\beta _2}} $$ is equal to
JEE Main 2019 (Online) 9th April Morning Slot
144
Let $$\mathop a\limits^ \to = 3\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + x\mathop k\limits^ \wedge $$ and $$\mathop b\limits^ \to = \mathop i\limits^ \wedge - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge $$ , for some real x. Then $$\left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$$ = r is possible if :
JEE Main 2019 (Online) 8th April Evening Slot
145
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors, out of which vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ are non-parallel. If $$\alpha $$ and $$\beta $$ are the angles which vector $$\overrightarrow a $$ makes with vectors $$\overrightarrow b $$ and $$\overrightarrow c $$ respectively and $$\overrightarrow a $$ $$ \times $$ ($$\overrightarrow b $$ $$ \times $$ $$\overrightarrow c $$) = $${1 \over 2}\overrightarrow b $$, then $$\left| {\alpha - \beta } \right|$$ is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
146
The sum of the distinct real values of $$\mu $$, for which the vectors, $$\mu \widehat i + \widehat j + \widehat k,$$   $$\widehat i + \mu \widehat j + \widehat k,$$   $$\widehat i + \widehat j + \mu \widehat k$$  are co-planar, is :
JEE Main 2019 (Online) 12th January Morning Slot
147
Let $$\sqrt 3 \widehat i + \widehat j,$$    $$\widehat i + \sqrt 3 \widehat j$$  and   $$\beta \widehat i + \left( {1 - \beta } \right)\widehat j$$ respectively be the position vectors of the points A, B and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $${3 \over {\sqrt 2 }}$$, then the sum of all possible values of $$\beta $$ is :
JEE Main 2019 (Online) 11th January Evening Slot
148
Let  $$\overrightarrow a = \widehat i + 2\widehat j + 4\widehat k,$$ $$\overrightarrow b = \widehat i + \lambda \widehat j + 4\widehat k$$ and $$\overrightarrow c = 2\widehat i + 4\widehat j + \left( {{\lambda ^2} - 1} \right)\widehat k$$ be coplanar vectors. Then the non-zero vector $$\overrightarrow a \times \overrightarrow c $$ is :
JEE Main 2019 (Online) 11th January Morning Slot
149
If $$\overrightarrow \alpha $$ = $$\left( {\lambda - 2} \right)\overrightarrow a + \overrightarrow b $$  and  $$\overrightarrow \beta = \left( {4\lambda - 2} \right)\overrightarrow a + 3\overrightarrow b $$ be two given vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ are non-collinear. The value of $$\lambda $$ for which vectors $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ are collinear, is -
JEE Main 2019 (Online) 10th January Evening Slot
150
Let $$\overrightarrow a = 2\widehat i + {\lambda _1}\widehat j + 3\widehat k,\,\,$$   $$\overrightarrow b = 4\widehat i + \left( {3 - {\lambda _2}} \right)\widehat j + 6\widehat k,$$  and  $$\overrightarrow c = 3\widehat i + 6\widehat j + \left( {{\lambda _3} - 1} \right)\widehat k$$  be three vectors such that $$\overrightarrow b = 2\overrightarrow a $$ and $$\overrightarrow a $$ is perpendicular to $$\overrightarrow c $$. Then a possible value of $$\left( {{\lambda _1},{\lambda _2},{\lambda _3}} \right)$$ is :
JEE Main 2019 (Online) 10th January Morning Slot
151
Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$.
If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
152
Let $$\overrightarrow a $$ = $$\widehat i - \widehat j$$, $$\overrightarrow b $$ = $$\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c $$

be a vector such that $$\overrightarrow a $$ × $$\overrightarrow c $$ + $$\overrightarrow b $$ = $$\overrightarrow 0 $$

and $$\overrightarrow a $$ . $$\overrightarrow c $$ = 4, then |$$\overrightarrow c $$|2 is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
153
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow c = \widehat j - \widehat k$$ and a vector $$\overrightarrow b $$ be such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$ and $$\overrightarrow a .\overrightarrow b = 3.$$ Then $$\left| {\overrightarrow b } \right|$$ equals :
JEE Main 2018 (Online) 16th April Morning Slot
154
Let $$\overrightarrow u $$ be a vector coplanar with the vectors $$\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$$ and $$\overrightarrow b = \widehat j + \widehat k$$. If $$\overrightarrow u $$ is perpendicular to $$\overrightarrow a $$ and $$\overrightarrow u .\overrightarrow b = 24$$, then $${\left| {\overrightarrow u } \right|^2}$$ is equal to
JEE Main 2018 (Offline)
155
If the position vectors of the vertices A, B and C of a $$\Delta $$ ABC are respectively $$4\widehat i + 7\widehat j + 8\widehat k,$$    $$2\widehat i + 3\widehat j + 4\widehat k,$$ and $$2\widehat i + 5\widehat j + 7\widehat k,$$ then the position vectors of the point, where the bisector of $$\angle $$A meets BC is :
JEE Main 2018 (Online) 15th April Evening Slot
156
If $$\overrightarrow a ,\,\,\overrightarrow b ,$$ and $$\overrightarrow C $$ are unit vectors such that $$\overrightarrow a + 2\overrightarrow b + 2\overrightarrow c = \overrightarrow 0 ,$$ then $$\left| {\overrightarrow a \times \overrightarrow c } \right|$$ is equal to :
JEE Main 2018 (Online) 15th April Morning Slot
157
If the vector $$\overrightarrow b = 3\widehat j + 4\widehat k$$ is written as the sum of a vector $$\overrightarrow {{b_1}} ,$$ paralel to $$\overrightarrow a = \widehat i + \widehat j$$ and a vector $$\overrightarrow {{b_2}} ,$$ perpendicular to $$\overrightarrow a ,$$ then $$\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} $$ is equal to :
JEE Main 2017 (Online) 9th April Morning Slot
158
The area (in sq. units) of the parallelogram whose diagonals are along the vectors $$8\widehat i - 6\widehat j$$ and $$3\widehat i + 4\widehat j - 12\widehat k,$$ is :
JEE Main 2017 (Online) 8th April Morning Slot
159
Let $$\overrightarrow a = 2\widehat i + \widehat j -2 \widehat k$$ and $$\overrightarrow b = \widehat i + \widehat j$$.

Let $$\overrightarrow c $$ be a vector such that $$\left| {\overrightarrow c - \overrightarrow a } \right| = 3$$,

$$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = 3$$ and the angle between $$\overrightarrow c $$ and $\overrightarrow a \times \overrightarrow b$ is $$30^\circ $$.

Then $$\overrightarrow a .\overrightarrow c $$ is equal to :
JEE Main 2017 (Offline)
160
Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $${{\overrightarrow a + \overrightarrow b + \overrightarrow c } \over 4}$$ respectively, then the position vector of the orthocentre of this triangle, is :
JEE Main 2016 (Online) 10th April Morning Slot
161
In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively 3$$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$,   $$-$$$$\widehat i$$ + 3$$\widehat j$$ + p$$\widehat k$$ and 5$$\widehat i$$ + q$$\widehat j$$ $$-$$ 4$$\widehat k$$, then the point (p, q) lies on a line :
JEE Main 2016 (Online) 9th April Morning Slot
162
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\sqrt 3 } \over 2}\left( {\overrightarrow b + \overrightarrow c } \right).$$ If $${\overrightarrow b }$$ is not parallel to $${\overrightarrow c },$$ then the angle between $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is:
JEE Main 2016 (Offline)
163
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of them are collinear and

$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a .$$ If $$\theta $$ is the angle between vectors $$\overrightarrow b $$ and $${\overrightarrow c }$$ , then a value of sin $$\theta $$ is :
JEE Main 2015 (Offline)
164
If $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\,\,\overrightarrow b \times \overrightarrow c \,\,\,\,\overrightarrow c \times \overrightarrow a } \right] = \lambda {\left[ {\overrightarrow a\,\,\,\,\,\,\,\, \overrightarrow b \,\,\,\,\,\,\,\,\overrightarrow c } \right]^2}$$ then $$\lambda $$ is equal to :
JEE Main 2014 (Offline)
165
If the vectors $$\overrightarrow {AB} = 3\widehat i + 4\widehat k$$ and $$\overrightarrow {AC} = 5\widehat i - 2\widehat j + 4\widehat k$$ are the sides of a triangle $$ABC,$$ then the length of the median through $$A$$ is :
JEE Main 2013 (Offline)
166
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two unit vectors. If the vectors $$\,\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ are perpendicular to each other, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
AIEEE 2012
167
Let $$ABCD$$ be a parallelogram such that $$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. If $$\overrightarrow r $$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$ then $$\overrightarrow r $$ is given by :
AIEEE 2012
168
The vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ are not perpendicular and $$\overrightarrow c $$ and $$\overrightarrow d $$ are two vectors satisfying $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a .\overrightarrow d = 0\,\,.$$ Then the vector $$\overrightarrow d $$ is equal to :
AIEEE 2011
169
If $$\overrightarrow a = {1 \over {\sqrt {10} }}\left( {3\widehat i + \widehat k} \right)$$ and $$\overrightarrow b = {1 \over 7}\left( {2\widehat i + 3\widehat j - 6\widehat k} \right),$$ then the value

of $$\left( {2\overrightarrow a - \overrightarrow b } \right)\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a + 2\overrightarrow b } \right)} \right]$$ is :
AIEEE 2011
170
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three non-zero vectors which are pairwise non-collinear. If $\overrightarrow a+3 \overrightarrow b$ is collinear with $\overrightarrow c$ and $\overrightarrow b+2 \overrightarrow c$ is collinear with $\overrightarrow a$, then $\overrightarrow a+\overrightarrow b+6 \overrightarrow c$ is :
AIEEE 2011
171
Let $$\overrightarrow a = \widehat j - \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k.$$ Then the vector $$\overrightarrow b $$ satisfying $$\overrightarrow a \times \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow a .\overrightarrow b = 3$$ :
AIEEE 2010
172
If the vectors $$\overrightarrow a = \widehat i - \widehat j + 2\widehat k,\,\,\,\,\,\overrightarrow b = 2\widehat i + 4\widehat j + \widehat k\,\,\,$$ and $$\,\overrightarrow c = \lambda \widehat i + \widehat j + \mu \widehat k$$ are mutually orthogonal, then $$\,\left( {\lambda ,\mu } \right)$$ is equal to :
AIEEE 2010
173
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ are non-coplanar vectors and $$p,q$$ are real numbers, then the equality $$\left[ {3\overrightarrow u \,\,p\overrightarrow v \,\,p\overrightarrow w } \right] - \left[ {p\overrightarrow v \,\,\overrightarrow w \,\,q\overrightarrow u } \right] - \left[ {2\overrightarrow w \,\,q\overrightarrow v \,\,q\overrightarrow u } \right] = 0$$ holds for :
AIEEE 2009
174
The vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k$$ lies in the plane of the vectors
$$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat j + \widehat k$$ and bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$.Then which one of the following gives possible values of $$\alpha $$ and $$\beta $$ ?
AIEEE 2008
175
The non-zero vectors are $${\overrightarrow a ,\overrightarrow b }$$ and $${\overrightarrow c }$$ are related by $${\overrightarrow a = 8\overrightarrow b }$$ and $${\overrightarrow c = - 7\overrightarrow b \,\,.}$$ Then the angle between $${\overrightarrow a }$$ and $${\overrightarrow c }$$ is :
AIEEE 2008
176
If $$\widehat u$$ and $$\widehat v$$ are unit vectors and $$\theta $$ is the acute angle between them, then $$2\widehat u \times 3\widehat v$$ is a unit vector for :
AIEEE 2007
177
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat i - \widehat j + 2\widehat k$$ and $$\overrightarrow c = x\widehat i + \left( {x - 2} \right)\widehat j - \widehat k\,\,.$$ If the vectors $$\overrightarrow c $$ lies in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$, then $$x$$ equals :
AIEEE 2007
178
If $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ where $${\overrightarrow a ,\overrightarrow b }$$ and $${\overrightarrow c }$$ are any three vectors such that $$\overrightarrow a .\overrightarrow b \ne 0,\,\,\overrightarrow b .\overrightarrow c \ne 0$$ then $${\overrightarrow a }$$ and $${\overrightarrow c }$$ are :
AIEEE 2006
179
The values of a, for which the points $$A, B, C$$ with position vectors $$2\widehat i - \widehat j + \widehat k,\,\,\widehat i - 3\widehat j - 5\widehat k$$ and $$a\widehat i - 3\widehat j + \widehat k$$ respectively are the vertices of a right angled triangle with $$C = {\pi \over 2}$$ are :
AIEEE 2006
180
If $$C$$ is the mid point of $$AB$$ and $$P$$ is any point outside $$AB,$$ then :
AIEEE 2005
181
Let $$a, b$$ and $$c$$ be distinct non-negative numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\,\,\widehat i + \widehat k$$ and $$c\widehat i + c\widehat j + b\widehat k$$ lie in a plane, then $$c$$ is :
AIEEE 2005
182
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar vectors and $$\lambda $$ is a real number then

$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right)\,\,\,\,\,\,\,\,{\lambda ^2}\overrightarrow b \,\,\,\,\,\,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\,\,\,\,\,\,\overrightarrow b + \overrightarrow c \,\,\,\,\,\,\,\,\overrightarrow b } \right]$$ for :
AIEEE 2005
183
For any vector $${\overrightarrow a }$$ , the value of $${\left( {\overrightarrow a \times \widehat i} \right)^2} + {\left( {\overrightarrow a \times \widehat j} \right)^2} + {\left( {\overrightarrow a \times \widehat k} \right)^2}$$ is equal to :
AIEEE 2005
184
Let $$\overrightarrow a \,\, = \,\,\widehat i - \widehat k,\,\,\,\,\,\overrightarrow b \,\,\, = \,\,\,x\widehat i + \widehat j\,\,\, + \,\,\,\left( {1 - x} \right)\widehat k$$ and $$\overrightarrow c \,\, = \,\,y\widehat i + x\widehat j + \left( {1 + x - y} \right)\widehat k.$$ Then $$\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]$$ depends on :
AIEEE 2005
185
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals to :
AIEEE 2004
186
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be non-zero vectors such that $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a \,\,.$$ If $$\theta $$ is the acute angle between the vectors $${\overrightarrow b }$$ and $${\overrightarrow c },$$ then $$sin\theta $$ equals :
AIEEE 2004
187
Let $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ be such that $$\left| {\overrightarrow u } \right| = 1,\,\,\,\left| {\overrightarrow v } \right|2,\,\,\,\left| {\overrightarrow w } \right|3.$$ If the projection $${\overrightarrow v }$$ along $${\overrightarrow u }$$ is equal to that of $${\overrightarrow w }$$ along $${\overrightarrow u }$$ and $${\overrightarrow v },$$ $${\overrightarrow w }$$ are perpendicular to each other then $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|$$ equals :
AIEEE 2004
188
A particle acted on by constant forces $$4\widehat i + \widehat j - 3\widehat k$$ and $$3\widehat i + \widehat j - \widehat k$$ is displaced from the point $$\widehat i + 2\widehat j + 3\widehat k$$ to the point $$\,5\widehat i + 4\widehat j + \widehat k.$$ The total work done by the forces is :
AIEEE 2004
189
If $${\overrightarrow a ,\overrightarrow b ,\overrightarrow c }$$ are non-coplanar vectors and $$\lambda $$ is a real number, then the vectors $${\overrightarrow a + 2\overrightarrow b + 3\overrightarrow c ,\,\,\lambda \overrightarrow b + 4\overrightarrow c }$$ and $$\left( {2\lambda - 1} \right)\overrightarrow c $$ are non coplanar for :
AIEEE 2004
190
If $$\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a $$ then $$\overrightarrow a + \overrightarrow b + \overrightarrow c = $$
AIEEE 2003
191
Let $$\overrightarrow u = \widehat i + \widehat j,\,\overrightarrow v = \widehat i - \widehat j$$ and $$\overrightarrow w = \widehat i + 2\widehat j + 3\widehat k\,\,.$$ If $$\widehat n$$ is a unit vector such that $$\overrightarrow u .\widehat n = 0$$ and $$\overrightarrow v .\widehat n = 0\,\,,$$ then $$\left| {\overrightarrow w .\widehat n} \right|$$ is equal to :
AIEEE 2003
192
The vectors $$\overrightarrow {AB} = 3\widehat i + 4\widehat k\,\,\& \,\,\overrightarrow {AC} = 5\widehat i - 2\widehat j + 4\widehat k$$ are the sides of triangle $$ABC.$$ The length of the median through $$A$$ is :
AIEEE 2003
193
$$\overrightarrow a \,,\overrightarrow b \,,\overrightarrow c $$ are $$3$$ vectors, such that

$$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ , $$\left| {\overrightarrow a } \right| = 1\,\,\,\left| {\overrightarrow b } \right| = 2,\,\,\,\left| {\overrightarrow c } \right| = 3,$$,

then $${\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a }$$ is equal to :
AIEEE 2003
194
A tetrahedron has vertices at $$O(0,0,0), A(1,2,1) B(2,1,3)$$ and $$C(-1,1,2).$$ Then the angle between the faces $$OAB$$ and $$ABC$$ will be :
AIEEE 2003
195
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and vectors $$\left( {1,a,{a^2}} \right),\,\,$$

$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
AIEEE 2003
196
Consider points $$A, B, C$$ and $$D$$ with position

vectors $$7\widehat i - 4\widehat j + 7\widehat k,\widehat i - 6\widehat j + 10\widehat k, - \widehat i - 3\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 5\widehat k$$ respectively. Then $$ABCD$$ is a :
AIEEE 2003
197
If $$\overrightarrow u \,,\overrightarrow v $$ and $$\overrightarrow w $$ are three non-coplanar vectors, then $$\,\left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u - \overrightarrow v } \right) \times \left( {\overrightarrow v - \overrightarrow w} \right)$$ equals :
AIEEE 2003
198
If $$\overrightarrow a \,\,,\,\,\overrightarrow b \,\,,\,\,\overrightarrow c $$ are vectors such that $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = 4$$ then $$\left[ {\overrightarrow a \, \times \overrightarrow b \,\,\overrightarrow b \times \,\overrightarrow c \,\,\overrightarrow c \, \times \overrightarrow a } \right] = $$
AIEEE 2002
199
If the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ from the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$, then :
AIEEE 2002
200
If $$\left| {\overrightarrow a } \right| = 5,\left| {\overrightarrow b } \right| = 4,\left| {\overrightarrow c } \right| = 3$$ thus what will be the value of $$\left| {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right|,$$ given that $$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ :
AIEEE 2002
201
$$\overrightarrow a = 3\widehat i - 5\widehat j$$ and $$\overrightarrow b = 6\widehat i + 3\widehat j$$ are two vectors and $$\overrightarrow c $$ is a vector such that $$\overrightarrow c = \overrightarrow a \times \overrightarrow b $$ then $$\left| {\overrightarrow a } \right|:\left| {\overrightarrow b } \right|:\left| {\overrightarrow c } \right|$$ =
AIEEE 2002
202
If the vectors $$\overrightarrow c ,\overrightarrow a = x\widehat i + y\widehat j + z\widehat k$$ and $$\widehat b = \widehat j$$ are such that $$\overrightarrow a ,\overrightarrow c $$ and $$\overrightarrow b $$ form a right handed system then $${\overrightarrow c }$$ is :
AIEEE 2002
203
If $$\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 2$$ and the angle between $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$\pi /6$$ then $${\left( {\overrightarrow a \times \overrightarrow b } \right)^2}$$ is equal to :
AIEEE 2002
Numerical
1

Let the three sides of a triangle ABC be given by the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$. Let $G$ be the centroid of the triangle $A B C$. Then $6\left(|\overrightarrow{\mathrm{AG}}|^2+|\overrightarrow{\mathrm{BG}}|^2+|\overrightarrow{\mathrm{CG}}|^2\right)$ is equal to __________.

JEE Main 2025 (Online) 4th April Evening Shift
2

Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3 \hat{i}-3 \hat{j}+3 \hat{k}, \vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{d}$ be a vector such that $\vec{b} \times \vec{d}=\vec{c} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=4$. Then $|(\vec{a} \times \vec{d})|^2$ is equal to___________.

JEE Main 2025 (Online) 3rd April Evening Shift
3

Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\lambda \hat{j}+\mu \hat{k}$ and $\hat{d}$ be a unit vector such that $\vec{a} \times \hat{d}=\vec{b} \times \hat{d}$ and $\vec{c} \cdot \hat{d}=1$. If $\vec{c}$ is perpendicular to $\vec{a}$, then $|3 \lambda \hat{d}+\mu \vec{c}|^2$ is equal to________

JEE Main 2025 (Online) 3rd April Morning Shift
4

Let $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}=\vec{a} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\vec{a} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$, $|\overrightarrow{\mathrm{c}}-2 \vec{a}|^2=8$ and the angle between $\overrightarrow{\mathrm{d}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{4}$, then $|10-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}|+|\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}|^2$ is equal to _________.

JEE Main 2025 (Online) 28th January Morning Shift
5

Let $\vec{c}$ be the projection vector of $\vec{b}=\lambda \hat{i}+4 \hat{k}, \lambda>0$, on the vector $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$. If $|\vec{a}+\vec{c}|=7$, then the area of the parallelogram formed by the vectors $\vec{b}$ and $\vec{c}$ is _________.

JEE Main 2025 (Online) 22nd January Morning Shift
6

Let $$\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}, \vec{b}=3 \hat{i}+7 \hat{j}-13 \hat{k}$$ and $$\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$$ be three given vectors. If $$\vec{r}$$ is a vector such that $$\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$$ and $$\vec{r} \cdot(\vec{b}-\vec{c})=0$$, then $$\frac{|593 \vec{r}+67 \vec{a}|^2}{(593)^2}$$ is equal to __________.

JEE Main 2024 (Online) 8th April Morning Shift
7

Let $$\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$$ and a vector $$\vec{c}$$ be such that $$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\hat{i}+8 \hat{j}+13 \hat{k}$$. If $$\vec{a} \cdot \vec{c}=13$$, then $$(24-\vec{b} \cdot \vec{c})$$ is equal to _______.

JEE Main 2024 (Online) 6th April Morning Shift
8

Let $$\overrightarrow{\mathrm{a}}=\hat{i}-3 \hat{j}+7 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{\mathrm{c}}$$ be a vector such that $$(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=3(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})$$. If $$\vec{a} \cdot \vec{c}=130$$, then $$\vec{b} \cdot \vec{c}$$ is equal to __________.

JEE Main 2024 (Online) 5th April Morning Shift
9

Let $$\mathrm{ABC}$$ be a triangle of area $$15 \sqrt{2}$$ and the vectors $$\overrightarrow{\mathrm{AB}}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c} \hat{k}$$ and $$\overrightarrow{\mathrm{AC}}=6 \hat{i}+\mathrm{d} \hat{j}-2 \hat{k}, \mathrm{~d}>0$$. Then the square of the length of the largest side of the triangle $$\mathrm{ABC}$$ is _________.

JEE Main 2024 (Online) 4th April Morning Shift
10
Let $\overrightarrow{\mathrm{a}}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{\mathrm{b}}=-\hat{i}-8 \hat{j}+2 \hat{k}$ and $\overrightarrow{\mathrm{c}}=4 \hat{i}+\mathrm{c}_2 \hat{j}+\mathrm{c}_3 \hat{k}$ be three vectors such that $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$. If the angle between the vector $\overrightarrow{\mathrm{c}}$ and the vector $3 \hat{i}+4 \hat{j}+\hat{k}$ is $\theta$, then the greatest integer less than or equal to $\tan ^2 \theta$ is _______________.
JEE Main 2024 (Online) 1st February Evening Shift
11

Let $$\vec{a}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$$ and $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$$ and $$(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$$. Then $$|\vec{c}|^2$$ is equal to ________.

JEE Main 2024 (Online) 31st January Evening Shift
12

Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}|=1,|\vec{b}|=4$$, and $$\vec{a} \cdot \vec{b}=2$$. If $$\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$$ and the angle between $$\vec{b}$$ and $$\vec{c}$$ is $$\alpha$$, then $$192 \sin ^2 \alpha$$ is equal to ________.

JEE Main 2024 (Online) 31st January Morning Shift
13
The least positive integral value of $\alpha$, for which the angle between the vectors $\alpha \hat{i}-2 \hat{j}+2 \hat{k}$ and $\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$ is acute, is ___________.
JEE Main 2024 (Online) 27th January Morning Shift
14

Let $$\vec{a}=3 \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}$$. If $$\vec{b}$$ is a vector such that $$\vec{a}=\vec{b} \times \vec{c}$$ and $$|\vec{b}|^{2}=50$$, then $$|72-| \vec{b}+\left.\vec{c}\right|^{2} \mid$$ is equal to __________.

JEE Main 2023 (Online) 13th April Morning Shift
15

Let $$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$$ and $$\vec{b}=\hat{i}+\hat{j}-\hat{k}$$. If $$\vec{c}$$ is a vector such that $$\vec{a} \cdot \vec{c}=11, \vec{b} \cdot(\vec{a} \times \vec{c})=27$$ and $$\vec{b} \cdot \vec{c}=-\sqrt{3}|\vec{b}|$$, then $$|\vec{a} \times \vec{c}|^{2}$$ is equal to _________.

JEE Main 2023 (Online) 11th April Evening Shift
16

Let $$\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$$ and $$\vec{c}$$ be vectors such that $$\vec{a} \times \vec{c}=\vec{a} \times \vec{b}$$. If

$$\vec{a} \cdot \vec{c}=-12, \vec{c} \cdot(\hat{i}-2 \hat{j}+\hat{k})=5$$, then $$\vec{c} \cdot(\hat{i}+\hat{j}+\hat{k})$$ is equal to _______________.

JEE Main 2023 (Online) 8th April Morning Shift
17

Let $$\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{u}$$ be a vector such that $$|\vec{u}|=\alpha>0$$. If the minimum value of the scalar triple product $$\left[ {\matrix{ {\overrightarrow u } & {\overrightarrow v } & {\overrightarrow w } \cr } } \right]$$ is $$-\alpha \sqrt{3401}$$, and $$|\vec{u} \cdot \hat{i}|^{2}=\frac{m}{n}$$ where $$m$$ and $$n$$ are coprime natural numbers, then $$m+n$$ is equal to ____________.

JEE Main 2023 (Online) 1st February Morning Shift
18

$$A(2,6,2), B(-4,0, \lambda), C(2,3,-1)$$ and $$D(4,5,0),|\lambda| \leq 5$$ are the vertices of a quadrilateral $$A B C D$$. If its area is 18 square units, then $$5-6 \lambda$$ is equal to __________.

JEE Main 2023 (Online) 1st February Morning Shift
19
Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that

$|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2$ and $2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a})$.

If the angle between $\vec{b}$ and $\vec{c}$ is $\frac{2 \pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2}$ is equal to __________.
JEE Main 2023 (Online) 31st January Evening Shift
20

Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6}$$ and $$|\vec{a} \times \vec{b}|=\sqrt{48}$$. Then $$(\vec{a} \cdot \vec{b})^{2}$$ is equal to ___________.

JEE Main 2023 (Online) 31st January Morning Shift
21

Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero non-coplanar vectors. Let the position vectors of four points $$A,B,C$$ and $$D$$ be $$\overrightarrow a - \overrightarrow b + \overrightarrow c ,\lambda \overrightarrow a - 3\overrightarrow b + 4\overrightarrow c , - \overrightarrow a + 2\overrightarrow b - 3\overrightarrow c $$ and $$2\overrightarrow a - 4\overrightarrow b + 6\overrightarrow c $$ respectively. If $$\overrightarrow {AB} ,\overrightarrow {AC} $$ and $$\overrightarrow {AD} $$ are coplanar, then $$\lambda$$ is equal to __________.

JEE Main 2023 (Online) 29th January Morning Shift
22

Let $$\overrightarrow a = \widehat i + 2\widehat j + \lambda \widehat k,\overrightarrow b = 3\widehat i - 5\widehat j - \lambda \widehat k,\overrightarrow a \,.\,\overrightarrow c = 7,2\overrightarrow b \,.\,\overrightarrow c + 43 = 0,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow c $$. Then $$\left| {\overrightarrow a \,.\,\overrightarrow b } \right|$$ is equal to :

JEE Main 2023 (Online) 24th January Evening Shift
23

Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2|\vec{b}|^{2}, \vec{a} \cdot \vec{b}=3$$ and $$|\vec{a} \times \vec{b}|^{2}=75$$. Then $$|\vec{a}|^{2}$$ is equal to __________.

JEE Main 2022 (Online) 29th July Evening Shift
24

Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three non-coplanar vectors such that $$\overrightarrow a $$ $$\times$$ $$\overrightarrow b $$ = 4$$\overrightarrow c $$, $$\overrightarrow b $$ $$\times$$ $$\overrightarrow c $$ = 9$$\overrightarrow a $$ and $$\overrightarrow c $$ $$\times$$ $$\overrightarrow a $$ = $$\alpha$$$$\overrightarrow b $$, $$\alpha$$ > 0. If $$\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right| = {1 \over {36}}$$, then $$\alpha$$ is equal to __________.

JEE Main 2022 (Online) 27th July Evening Shift
25

Let  $$\overrightarrow a = \widehat i - 2\widehat j + 3\widehat k$$,   $$\overrightarrow b = \widehat i + \widehat j + \widehat k$$   and   $$\overrightarrow c $$   be a vector such that   $$\overrightarrow a + \left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow 0 $$   and   $$\overrightarrow b \,.\,\overrightarrow c = 5$$. Then the value of   $$3\left( {\overrightarrow c \,.\,\overrightarrow a } \right)$$   is equal to _________.

JEE Main 2022 (Online) 29th June Evening Shift
26

If $$\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 3\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k$$ are coplanar vectors and $$\overrightarrow a \,.\,\overrightarrow c = 5$$, $$\overrightarrow b \bot \overrightarrow c $$, then $$122({c_1} + {c_2} + {c_3})$$ is equal to ___________.

JEE Main 2022 (Online) 28th June Morning Shift
27

Let $$\overrightarrow b = \widehat i + \widehat j + \lambda \widehat k$$, $$\lambda$$ $$\in$$ R. If $$\overrightarrow a $$ is a vector such that $$\overrightarrow a \times \overrightarrow b = 13\widehat i - \widehat j - 4\widehat k$$ and $$\overrightarrow a \,.\,\overrightarrow b + 21 = 0$$, then $$\left( {\overrightarrow b - \overrightarrow a } \right).\,\left( {\widehat k - \widehat j} \right) + \left( {\overrightarrow b + \overrightarrow a } \right).\,\left( {\widehat i - \widehat k} \right)$$ is equal to _____________.

JEE Main 2022 (Online) 25th June Evening Shift
28

Let $$\theta$$ be the angle between the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$, where $$|\overrightarrow a | = 4,$$ $$|\overrightarrow b | = 3$$ and $$\theta \in \left( {{\pi \over 4},{\pi \over 3}} \right)$$. Then $${\left| {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$ is equal to __________.

JEE Main 2022 (Online) 25th June Morning Shift
29
Let $$\overrightarrow a = 2\widehat i - \widehat j + 2\widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j - \widehat k$$. Let a vector $$\overrightarrow v $$ be in the plane containing $$\overrightarrow a $$ and $$\overrightarrow b $$. If $$\overrightarrow v $$ is perpendicular to the vector $$3\widehat i + 2\widehat j - \widehat k$$ and its projection on $$\overrightarrow a $$ is 19 units, then $${\left| {2\overrightarrow v } \right|^2}$$ is equal to _____________.
JEE Main 2021 (Online) 1st September Evening Shift
30
Let $$\overrightarrow a = \widehat i + 5\widehat j + \alpha \widehat k$$, $$\overrightarrow b = \widehat i + 3\widehat j + \beta \widehat k$$ and $$\overrightarrow c = - \widehat i + 2\widehat j - 3\widehat k$$ be three vectors such that, $$\left| {\overrightarrow b \times \overrightarrow c } \right| = 5\sqrt 3 $$ and $${\overrightarrow a }$$ is perpendicular to $${\overrightarrow b }$$. Then the greatest amongst the values of $${\left| {\overrightarrow a } \right|^2}$$ is _____________.
JEE Main 2021 (Online) 27th August Morning Shift
31
If the projection of the vector $$\widehat i + 2\widehat j + \widehat k$$ on the sum of the two vectors $$2\widehat i + 4\widehat j - 5\widehat k$$ and $$ - \lambda \widehat i + 2\widehat j + 3\widehat k$$ is 1, then $$\lambda$$ is equal to __________.
JEE Main 2021 (Online) 26th August Evening Shift
32
Let $$\overrightarrow a = \widehat i - \alpha \widehat j + \beta \widehat k$$,   $$\overrightarrow b = 3\widehat i + \beta \widehat j - \alpha \widehat k$$ and $$\overrightarrow c = -\alpha \widehat i - 2\widehat j + \widehat k$$, where $$\alpha$$ and $$\beta$$ are integers. If $$\overrightarrow a \,.\,\overrightarrow b = - 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = 10$$, then $$\left( {\overrightarrow a \, \times \overrightarrow b } \right).\,\overrightarrow c $$ is equal to ___________.
JEE Main 2021 (Online) 27th July Evening Shift
33
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b $$ and $$\overrightarrow c = \widehat j - \widehat k$$ be three vectors such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$ and $$\overrightarrow a \,.\,\overrightarrow b = 1$$. If the length of projection vector of the vector $$\overrightarrow b $$ on the vector $$\overrightarrow a \times \overrightarrow c $$ is l, then the value of 3l2 is equal to _____________.
JEE Main 2021 (Online) 27th July Morning Shift
34
If $$\left( {\overrightarrow a + 3\overrightarrow b } \right)$$ is perpendicular to $$\left( {7\overrightarrow a - 5\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - 4\overrightarrow b } \right)$$ is perpendicular to $$\left( {7\overrightarrow a - 2\overrightarrow b } \right)$$, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ (in degrees) is _______________.
JEE Main 2021 (Online) 25th July Evening Shift
35
Let $$\overrightarrow p = 2\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow q = \widehat i + 2\widehat j + \widehat k$$ be two vectors. If a vector $$\overrightarrow r = (\alpha \widehat i + \beta \widehat j + \gamma \widehat k)$$ is perpendicular to each of the vectors ($$(\overrightarrow p + \overrightarrow q )$$ and $$(\overrightarrow p - \overrightarrow q )$$, and $$\left| {\overrightarrow r } \right| = \sqrt 3 $$, then $$\left| \alpha \right| + \left| \beta \right| + \left| \gamma \right|$$ is equal to _______________.
JEE Main 2021 (Online) 25th July Morning Shift
36
For p > 0, a vector $${\overrightarrow v _2} = 2\widehat i + (p + 1)\widehat j$$ is obtained by rotating the vector $${\overrightarrow v _1} = \sqrt 3 p\widehat i + \widehat j$$ by an angle $$\theta$$ about origin in counter clockwise direction. If $$\tan \theta = {{\left( {\alpha \sqrt 3 - 2} \right)} \over {\left( {4\sqrt 3 + 3} \right)}}$$, then the value of $$\alpha$$ is equal to _____________.
JEE Main 2021 (Online) 20th July Evening Shift
37
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle $$\theta$$, with the vector $$\overrightarrow a $$ + $$\overrightarrow b $$ + $$\overrightarrow c $$. Then 36cos22$$\theta$$ is equal to ___________.
JEE Main 2021 (Online) 20th July Morning Shift
38
If the shortest distance between the lines $$\overrightarrow {{r_1}} = \alpha \widehat i + 2\widehat j + 2\widehat k + \lambda (\widehat i - 2\widehat j + 2\widehat k)$$, $$\lambda$$ $$\in$$ R, $$\alpha$$ > 0 and $$\overrightarrow {{r_2}} = - 4\widehat i - \widehat k + \mu (3\widehat i - 2\widehat j - 2\widehat k)$$, $$\mu$$ $$\in$$ R is 9, then $$\alpha$$ is equal to ____________.
JEE Main 2021 (Online) 20th July Morning Shift
39
Let $$\overrightarrow x $$ be a vector in the plane containing vectors $$\overrightarrow a = 2\widehat i - \widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j - \widehat k$$. If the vector $$\overrightarrow x $$ is perpendicular to $$\left( {3\widehat i + 2\widehat j - \widehat k} \right)$$ and its projection on $$\overrightarrow a $$ is $${{17\sqrt 6 } \over 2}$$, then the value of $$|\overrightarrow x {|^2}$$ is equal to __________.
JEE Main 2021 (Online) 17th March Evening Shift
40
If $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + 3\widehat k$$,

$$\overrightarrow b = - \beta \widehat i - \alpha \widehat j - \widehat k$$ and

$$\overrightarrow c = \widehat i - 2\widehat j - \widehat k$$

such that $$\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = - 3$$, then $${1 \over 3}\left( {\left( {\overrightarrow a \times \overrightarrow b } \right)\,.\,\overrightarrow c } \right)$$ is equal to _____________.
JEE Main 2021 (Online) 17th March Morning Shift
41
Let $$\overrightarrow c $$ be a vector perpendicular to the vectors, $$\overrightarrow a $$ = $$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$ and
$$\overrightarrow b $$ = $$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$. If $$\overrightarrow c \,.\,\left( {\widehat i + \widehat j + 3\widehat k} \right)$$ = 8 then the value of
$$\overrightarrow c $$ . $$\left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to __________.
JEE Main 2021 (Online) 16th March Evening Shift
42
Let $$\overrightarrow a = \widehat i + \alpha \widehat j + 3\widehat k$$ and $$\overrightarrow b = 3\widehat i - \alpha \widehat j + \widehat k$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$8\sqrt 3 $$ square units, then $$\overrightarrow a $$ . $$\overrightarrow b $$ is equal to __________.
JEE Main 2021 (Online) 25th February Evening Shift
43
Let $$\overrightarrow a = \widehat i + 2\widehat j - \widehat k$$, $$\overrightarrow b = \widehat i - \widehat j$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k$$ be three given vectors. If $$\overrightarrow r $$ is a vector such that $$\overrightarrow r \times \overrightarrow a = \overrightarrow c \times \overrightarrow a $$ and $$\overrightarrow r .\,\overrightarrow b = 0$$, then $$\overrightarrow r .\,\overrightarrow a $$ is equal to __________.
JEE Main 2021 (Online) 25th February Morning Shift
44
Let three vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be such that $$\overrightarrow c $$ is coplanar
with $$\overrightarrow a $$ and $$\overrightarrow b $$, $$\overrightarrow a .\overrightarrow c $$ = 7 and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, where
$$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat k$$ , then the
value of $$2{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2}$$ is _____.
JEE Main 2021 (Online) 24th February Morning Shift
45
If $$\overrightarrow x $$ and $$\overrightarrow y $$ be two non-zero vectors such that $$\left| {\overrightarrow x + \overrightarrow y } \right| = \left| {\overrightarrow x } \right|$$ and $${2\overrightarrow x + \lambda \overrightarrow y }$$ is perpendicular to $${\overrightarrow y }$$, then the value of $$\lambda $$ is _________ .
JEE Main 2020 (Online) 6th September Evening Slot
46
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are unit vectors, then the greatest value of

$$\sqrt 3 \left| {\overrightarrow a + \overrightarrow b } \right| + \left| {\overrightarrow a - \overrightarrow b } \right|$$ is_____.
JEE Main 2020 (Online) 6th September Morning Slot
47
Let the vectors $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be such that
$$\left| {\overrightarrow a } \right| = 2$$, $$\left| {\overrightarrow b } \right| = 4$$ and $$\left| {\overrightarrow c } \right| = 4$$. If the projection of
$$\overrightarrow b $$ on $$\overrightarrow a $$ is equal to the projection of $$\overrightarrow c $$ on $$\overrightarrow a $$
and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, then the value of
$$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ is ___________.
JEE Main 2020 (Online) 5th September Evening Slot
48
If $$\overrightarrow a = 2\widehat i + \widehat j + 2\widehat k$$, then the value of

$${\left| {\widehat i \times \left( {\overrightarrow a \times \widehat i} \right)} \right|^2} + {\left| {\widehat j \times \left( {\overrightarrow a \times \widehat j} \right)} \right|^2} + {\left| {\widehat k \times \left( {\overrightarrow a \times \widehat k} \right)} \right|^2}$$ is equal to____
JEE Main 2020 (Online) 4th September Evening Slot
49
Let the position vectors of points 'A' and 'B' be
$$\widehat i + \widehat j + \widehat k$$ and $$2\widehat i + \widehat j + 3\widehat k$$, respectively. A point 'P' divides the line segment AB internally in the ratio $$\lambda $$ : 1 ( $$\lambda $$ > 0). If O is the origin and
$$\overrightarrow {OB} .\overrightarrow {OP} - 3{\left| {\overrightarrow {OA} \times \overrightarrow {OP} } \right|^2} = 6$$, then $$\lambda $$ is equal to______.
JEE Main 2020 (Online) 2nd September Evening Slot
50
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8.

Then $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ is equal to ______.
JEE Main 2020 (Online) 2nd September Morning Slot
51
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three vectors such that $$\left| {\overrightarrow a } \right| = \sqrt 3 $$, $$\left| {\overrightarrow b } \right| = 5,\overrightarrow b .\overrightarrow c = 10$$ and the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is $${\pi \over 3}$$. If $${\overrightarrow a }$$ is perpendicular to the vector $$\overrightarrow b \times \overrightarrow c $$ , then $$\left| {\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)} \right|$$ is equal to _____.
JEE Main 2020 (Online) 9th January Evening Slot
52
If the vectors, $$\overrightarrow p = \left( {a + 1} \right)\widehat i + a\widehat j + a\widehat k$$,

$$\overrightarrow q = a\widehat i + \left( {a + 1} \right)\widehat j + a\widehat k$$ and

$$\overrightarrow r = a\widehat i + a\widehat j + \left( {a + 1} \right)\widehat k\left( {a \in R} \right)$$

are coplanar and $$3{\left( {\overrightarrow p .\overrightarrow q } \right)^2} - \lambda \left| {\overrightarrow r \times \overrightarrow q } \right|^2 = 0$$, then the value of $$\lambda $$ is ______.
JEE Main 2020 (Online) 9th January Morning Slot