Trigonometry
Trigonometric Ratio and Identites
NumericalMCQ (Single Correct Answer)
1
JEE Main 2025 (Online) 7th April Evening Shift
Numerical
+4
-1
Let the lengths of the transverse and conjugate axes of a hyperbola in standard form be $2 a$ and $2 b$, respectively, and one focus and the corresponding directrix of this hyperbola be $(-5,0)$ and $5 x+9=0$, respectively. If the product of the focal distances of a point $(\alpha, 2 \sqrt{5})$ on the hyperbola is $p$, then $4 p$ is equal to ___________.
Your input ____
2
JEE Main 2025 (Online) 7th April Morning Shift
Numerical
+4
-1

Consider the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ having one of its focus at $\mathrm{P}(-3,0)$. If the latus ractum through its other focus subtends a right angle at P and $a^2 b^2=\alpha \sqrt{2}-\beta, \alpha, \beta \in \mathbb{N}$, then $\alpha+\beta$ is _________ .

Your input ____
3
JEE Main 2025 (Online) 3rd April Evening Shift
Numerical
+4
-1
If the equation of the hyperbola with foci $(4,2)$ and $(8,2)$ is $3 x^2-y^2-\alpha x+\beta y+\gamma=0$, then $\alpha+\beta+\gamma$ is equal to__________.
Your input ____
4
JEE Main 2025 (Online) 3rd April Morning Shift
Numerical
+4
-1

Let the product of the focal distances of the point $\mathbf{P}(4,2 \sqrt{3})$ on the hyperbola $\mathrm{H}: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be 32 . Let the length of the conjugate axis of H be $p$ and the length of its latus rectum be $q$. Then $p^2+q^2$ is equal to__________

Your input ____
JEE Main Subjects