Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
The following resolution rule is used in logic programming. Derive clause $$\left( {P \vee Q} \right)$$ from clauses $$\left( {P \vee R} \right)$$, $$\left( {Q \vee \neg R} \right)$$.

Which of the following statements related to this rule is FALSE?

A
$$\left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right) \Rightarrow \left( {P \vee Q} \right)$$ is logically valid
B
$$\left( {P \vee Q} \right) \Rightarrow \left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right)$$ is logically valid
C
$$\left( {P \vee Q} \right)$$ is satisfiable if and only if $${\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)}$$ is satisfiable
D
$$\left( {P \vee Q} \right) \Rightarrow $$ FALSE if and only if both $$P$$ and $$Q$$ are unsatisfiable
2
GATE CSE 2000
MCQ (Single Correct Answer)
+2
-0.6
Let $$a, b, c, d$$ be propositions. Assume that the equivalences $$a \leftrightarrow \left( {b \vee \neg b} \right)$$ and $$b \leftrightarrow c$$ hold. Then the truth value of the formulae $$\left( {a\, \wedge \,b} \right) \to \left( {\left( {a \wedge c} \right) \vee d} \right)$$ is always
A
True
B
False
C
Same as truth value of $$b$$
D
Same as truth value of $$d$$
3
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is false? Read $$ \wedge $$ as AND, $$ \vee $$ as OR, $$ \sim $$ as NOT, $$ \to $$ as one way implication and $$ \leftrightarrow $$ two way implication.
A
$$\left( {\left( {x \to y} \right) \wedge x} \right) \to y$$
B
$$\left( {\left( { \sim x \to y} \right) \wedge \left( { \sim x \to \sim y} \right)} \right) \to x$$
C
$$\left( {x \to \left( {x \vee y} \right)} \right)$$
D
$$\left( {\left( {x \vee y} \right) \leftrightarrow \left( { \sim x \to \sim y} \right)} \right)$$
4
GATE CSE 1995
MCQ (Single Correct Answer)
+2
-0.6
If the proposition $$\neg p \Rightarrow q$$ is true, then the truth value of the proposition $$\neg p \vee \left( {p \Rightarrow q} \right)$$ where $$'\neg '$$ is negation, $$' \vee '$$ is inclusive or and $$' \Rightarrow '$$ is implication, is
A
true
B
multiple-valued
C
false
D
cannot be determined
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization