Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 1994
True or False
+2
-0
Let $$p$$ and $$q$$ be propositions. Using only the truth table decide whether $$p \Leftrightarrow q$$ does not imply $$p \to \sim q$$ is true or false.
A
TRUE
B
FALSE
2
GATE CSE 1990
MCQ (Single Correct Answer)
+2
-0.6
Indicate which of the following well-formed formula are valid:
A
$$\left( {\left( {{\rm P} \Rightarrow Q} \right) \wedge \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {{\rm P} \Rightarrow R} \right).$$
B
$$\left( {{\rm P} \Rightarrow Q} \right) \Rightarrow \left( { \sim P \Rightarrow \sim Q} \right)$$
C
$$\left( {{\rm P}\, \wedge \,\left( { \sim {\rm P}\,\,V \sim Q} \right)} \right) \Rightarrow Q\left( { \sim {\rm P} \Rightarrow \sim Q} \right)$$
D
$$\left( {\left( {{\rm P} \Rightarrow R} \right) \vee \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {\left( {\left( {{\rm P} \vee Q} \right) \Rightarrow R} \right)} \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization